
SPLITTING THE SCENE GRAPH
Using Spatial Relationship Graphs Instead of Scene Graphs in Augmented Reality

Florian Echtler, Manuel Huber, Daniel Pustka, Peter Keitler, Gudrun Klinker, PhD
Institut für Informatik I16, Technische Universität München, Boltzmannstr. 3, 85747 Garching

{echtler,huberma,pustka,keitler,klinker}@in.tum.de

Keywords: scenegraph, spatial relationship graph, augmented reality, tracking

Abstract: Scene graphs have been a core element of 3D graphics since the publication of Inventor. However, in Virtual
and Augmented Reality applications, 3D graphics are often interleaved with and controlled by real-world data
provided by pose trackers, cameras and other kinds of sensors. In such a setup, the generalized concept of
a Spatial Relationship Graph (SRG) might be better suited as an underlying data structure to describe the
application and its components. In this paper, we will give an overview of the SRG concept, describe its
difference to a scene graph and provide an example AR application built upon an SRG-based tracking library.

1 INTRODUCTION AND
RELATED WORK

At least since the publication of Inventor (Wernecke,
1994), just about every major graphics system has
been using scene graphs as the underlying data struc-
ture for describing a 3D world. Some widely-known
examples include OpenSG (Reiners, 2002), Open-
SceneGraph (Burns and Osfield, 2004) or Java3D
(Sowizral et al., 1997). One common feature of all
these systems is that they do not use a generalized
graph, but rather a tree or a directed acyclic graph
(DAG).

While this concept has proven highly useful
for rendering large 3D worlds, augmented reality
applications (Azuma, 1995) could benefit from a
different approach. Although scenegraph-based APIs
such as Studierstube (Schmalstieg et al., 2000) or
OSGART (Looser et al., 2006) have been extended
in ingenious ways to enable a wide selection of
visualization concepts, we suggest that a variant of
the scene graph, the spatial relationship graph (SRG),
is a better-suited data structure in augmented reality
applications.

A classical scene graph contains no representation
for any real-world objects. Consequently, if one or

more transformations in the scene are determined by
external data sources, these transformations change
”out of the blue”, i.e. are influenced by objects not
contained in the scene graph. This leads to a split in
the information necessary to describe the application.
The 3D graphics and their relations are described in
the scene graph, while trackers, cameras etc. are de-
scribed in another, possibly hardcoded, part of the ap-
plication.

The SRG, on the other hand, is a graph which
does not only describe spatial relations between
virtual objects, but also between real-world objects
such as cameras or pose trackers that are necessary
for AR. SRGs have been introduced by (Newman
et al., 2004; Wagner, 2005) and further explored by
(Pustka et al., 2006).

A growing trend in many application fields is the
move away from monolithic, compiled code towards
high-level description languages. Such high-level lan-
guages provide, e.g., better maintainability and faster
prototyping. SRGs and the UTQL language (Pustka
et al., 2007) are able to provide such a high-level de-
scription for augmented reality applications by encap-
sulating the scene graph in a wrapper which allows a
unified view of the entire setup.



2 SPATIAL RELATIONSHIP
GRAPHS

An SRG is a directed graph in which nodes represent
coordinate systems. An edge represents a transfor-
mation between the nodes which it connects. This
can, e.g., be a 6D pose for transforming between a
tracker’s world coordinate system and the tracked ob-
ject. It could also be a projective transformation from
3D to 2D coordinates or a 2D feature position in an
image.

An edge is labeled with attributes. These can be,
e.g., the type of transformation the edge represents
and whether it is a static or dynamic transformation,
i.e. is fixed or changes over time. Usually, the static
transformations are known in advance, for example a
camera calibration.

Ultimately, the goal in most AR applications is to
compute one or more previously unknown transfor-
mations and use these to render an augmentation. The
SRG provides an intuitive way to gather the required
information. Suppose we want to calculate the un-
known transformation from coordinate system A to
system D (see figure 1). The SRG does not contain
a corresponding edge as this transformation is not yet
known. However, if there is a path from A to D, say
via the nodes B and C, that consists of known trans-
formations, then the concatenation of the three trans-
formations A → B, B → C and C → D results in the
previously unknown transformation A→D. Note that

Figure 1: Two possible paths from A to D

if a transformation A→ B is invertible (a 6D pose, for
example), the inverse edge B → A can also be added
to the graph. After inserting this new edge into the
SRG, it can be used in subsequent calculations until
the required transformation has been computed. In
(Pustka et al., 2006), several more complex variants
of such graph relationships, also called spatial rela-
tionship patterns, are described.

3 AUGMENTED REALITY WITH
SRGS

In this section, we present a typical augmented real-
ity application and its representation as an SRG as an
example of how this concept can be used not only for
pure tracking problems, but also for the rendering as-
pect of AR applications. Our setup consists of a cam-
era and several optical markers, each of which is to be
augmented with a different 3D graphics object.

As a consequence, the geometric relationship be-
tween the poses of the virtual objects depends on a
number of independently controllable (tangible) real
objects. The corresponding transformations in the vir-
tual part of the SRG are not fixed.

The video image from the camera is to be dis-
played in the background. The resulting SRG is pre-
sented in figure 2 and shall be described in this sec-
tion.

The conventions used in this example are as fol-
lows: Static edges are solid, while dynamic edges are
dashed. Each edge is labeled with the type of trans-
formation it represents. Edges which are labeled in
brackets are not yet known and have to be computed
from other edges.

3.1 System and SRG Description

The core of this setup is formed by a real-world cam-
era. This camera introduces two coordinate systems:
first, the 3D camera coordinate system, which usually
has the z-axis pointing along the view direction of the
camera, and second, the 2D image plane coordinate
system. We assume that the transformation between
these two, a projection matrix labeled PC in the graph,
is known through a prior camera calibration.

In addition to the camera, an optical flat marker is
present in our setup. Assuming a marker of known
size, four 2D point correspondences are necessary
to calculate the pose of the marker relative to the
camera. These correspondences are themselves trans-
formations between the camera image coordinate
system and the marker coordinate system and are
labeled 2D4 in the graph. The superscript 4 is used
to denote a multi-edge, consisting of four distinct
transformations.

In order to create a spatially aligned augmentation,
we need to take several virtual coordinate systems
into account. In this simple case, there exists a corre-
spondence between each of the real-world coordinate
systems and a virtual one. These correspondences are
labeled with id, denoting the identity transformation.



Figure 2: Example SRG for Rendering in AR

Special attention should be paid to the
VirtualOb ject node. Within each such node, a
full scenegraph-based description of graphical detail
can be encapsulated. In figure 2, this is exemplified
by a secondary tree structure inside the node. This en-
capsulating node is equivalent to the root of the scene
graph. While all other scene graph nodes describing
the object could also be integrated into the SRG,
this would likely cause performance problems for
graph algorithms operating on the SRG. Of course,
a more complex AR application is bound to contain
more than one virtual object. In this case, several
encapsulated scene graphs exist and are traversed in
turn when the corresponding object is rendered. If
several identical objects are required, the same scene
graph can even be reused and traversed from different
contexts as described, e.g., by (Reitmayr, 2005).

In order to render the object at the correct
position, the transformation labeled (6D) between
the VirtualWorld and VirtualOb ject nodes must be
known. By following the two identity transformations
to the Marker and Camera nodes, we can infer that
these two coordinate systems are linked by the same
transformation. As we assume the camera calibration
PC to be known, we can follow the path via the
ImagePlane node and finally calculate the required
6D pose from the aforementioned four 2D-2D corre-
spondences. Note that the Marker coordinate system
is in fact a three-dimensional coordinate system,
as we want to calculate a full 6D transformation to
the Camera system. Therefore, we are dealing with
2D-3D correspondences. However, as the marker is
known to be flat, the third coordinate can be defined

as zero in all cases, reducing the correspondences to
2D-2D. 1

In order to create a credible augmentation, the
video image has to be integrated into our sys-
tem if no optical see-through display is avail-
able. To achieve this, we introduce a node
BackgroundVideo which is coplanar with the cam-
era image plane. This node is also coplanar with
the final screen coordinate system of the resulting
image which is to be displayed to the user. Note
that a loop of fixed transformations exists along
the five nodes VirtualWorld, Camera, ImagePlane,
BackgroundVideo and ScreenCoordinates. In order
to be consistent with the previously described con-
straints, each path between two of these nodes must
result in the same overall transformation. It there-
fore follows that the projection matrix used by the
rendering system PV has to be equal to the camera
projection matrix PC. Otherwise, the field of view for
the augmentation would differ from the video image,
leading to disparities between the augmented and the
real-world view.

3.2 Notes on Implementation

Our example is built on top of the Ubitrack (Huber
et al., 2007) library. As this library’s main focus re-

1This dimensional reduction could also be represented
in the SRG by introducing an additional 2D coordinate sys-
tem for each marker and a transformation which embeds
this plane into the corresponding 3D Marker system. How-
ever, it was left out in the example SRG to avoid unneces-
sary complexity.



Figure 3: augmented optical markers and corresponding
SRG nodes

mains on sensor fusion, we decided against integra-
tion with one of the large scene graph APIs mentioned
above in order to keep the library’s dependency count
low. Instead, we implemented a basic scene graph
traversal based on the XML visitor pattern already
present in the library, taking advantage of the inher-
ent scene graph structure of X3D files. This allows
implementation of a small scene graph API in about
10 kB of C++ code to provide a basic visualization of
encapsulated 3D objects with almost no overhead.

Only if any of the edges incident to the
VirtualWorld node changes, the view has to be re-
rendered. The implementation updates the transfor-
mations to each VirtualOb ject and traverses each en-
capsulated scene graph in turn, thereby avoiding un-
necessary redraws. In our example, which does not
contain interpolators, this results in a synchronization
of the rendered output to the camera frame rate. In fig-
ure 3, our example scenario is shown from a second
camera’s perspective, along with the directly visible
SRG nodes.

4 CONCLUSION AND OUTLOOK

We propose that for augmented reality applica-
tions, the spatial relationship graph is a better-suited
data structure than a scene graph. While the scene
graph is highly useful for pure rendering tasks, the
SRG presents a more intuitive way to incorporate the
various real-world coordinate systems which invari-
ably are part of AR scenarios. We therefore suggest
to split the scene graph into several static subtrees and
encapsulate each of those in an SRG node, thereby
creating an unified view of the entire AR application.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from Bay-
erische Forschungsstiftung (BFS) for the TrackFrame
project and in part by the PRESENCCIA project.

REFERENCES

Azuma, R. (1995). A survey of augmented reality. In SIG-
GRAPH ’95 Proceedings (Aug. 1995), pp. 1–38.

Burns, D. and Osfield, R. (2004). Open scene graph - a:
Introduction, b: Examples and applications. In VR
’04: Proceedings of the IEEE Virtual Reality 2004
(VR’04), page 265.

Huber, M., Pustka, D., Keitler, P., Echtler, F., and Klinker,
G. (2007). A System Architecture for Ubiquitous
Tracking Environments. In Proceedings of the 6th In-
ternational Symposium on Mixed and Augmented Re-
ality (ISMAR).

Looser, J., Grasset, R., Seichter, H., and Billinghurst, M.
(2006). OSGART - A Pragmatic Approach to MR. In
Industrial Workshop at ISMAR 2006.

Newman, J., Wagner, M., Bauer, M., MacWilliams, A.; Pin-
taric, T., Beyer, D., Pustka, D., Strasser, F., Schmal-
stieg, D., and Klinker, G. (2-5 Nov. 2004). Ubiquitous
tracking for augmented reality. Mixed and Augmented
Reality, 2004. ISMAR 2004. Third IEEE and ACM In-
ternational Symposium on, pages 192–201.

Pustka, D., Huber, M., Bauer, M., and Klinker, G. (2006).
Spatial Relationship Patterns: Elements of Reusable
Tracking and Calibration Systems. In Proc. IEEE In-
ternational Symposium on Mixed and Augmented Re-
ality (ISMAR’06).

Pustka, D., Huber, M., Echtler, F., and Keitler, P. (2007).
UTQL: The Ubiquitous Tracking Query Language
v1.0. Technical Report TUM-I0718, Institut für In-
formatik, Technische Universität München.

Reiners, D. (2002). Open SG: A Scene Graph System for
Flexible and Efficient Realtime Rendering for Virtual
and Augmented Reality Applications. PhD thesis.

Reitmayr, G.; Schmalstieg, D. (2005). Flexible
parametrization of scene graphs. Virtual Reality, 2005.
Proceedings. VR 2005. IEEE, pages 51–58.

Schmalstieg, D., Fuhrmann, A., Hesina, G., Szalavári, Z.,
Encarnação, L. M., Gervautz, M., and Purgathofer, W.
(2000). The Studierstube Augmented Reality Project.
Technical report, Institute of Computer Graphics and
Algorithms, Vienna University of Technology.

Sowizral, H., Rushforth, K., and Deering, M. (1997). The
Java 3D API Specification.

Wagner, M. (2005). Tracking With Multiple Sensors. PhD
thesis.

Wernecke, J. (1994). The Inventor Mentor: Programming
Object-Oriented 3D Graphics with Open Inventor.


	Introduction and Related Work
	Spatial Relationship Graphs
	Augmented Reality with SRGs
	System and SRG Description
	Notes on Implementation

	Conclusion and Outlook

