
Copyright © 2012 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
TEI 2012, Kingston, Ontario, Canada, February 19 – 22, 2012.
© 2012 ACM 978-1-4503-1174-8/12/0002 $10.00

GISpL: Gestures Made Easy

Florian Echtler
Munich Univ. of Applied Sciences /

Siemens Corporate Technology
florian.echtler@siemens.com

Andreas Butz
Ludwig-Maximilians-Universität München

Institut für Informatik
butz@ifi.lmu.de

Figure 1: Controlling a widget using alternative input methods

ABSTRACT
We present GISpL, the Gestural Interface Specification Lan-
guage. GISpL is a formal language which allows both re-
searchers and developers to unambiguously describe the be-
havior of a wide range of gestural interfaces using a simple
JSON-based syntax. GISpL supports a multitude of input
modalities, including multi-touch, digital pens, multiple reg-
ular mice, tangible interfaces or mid-air gestures.

GISpL introduces a novel view on gestural interfaces from
a software-engineering perspective. By using GISpL, devel-
opers can avoid tedious tasks such as reimplementing the
same gesture recognition algorithms over and over again.
Researchers benefit from the ability to quickly reconfigure
prototypes of gestural UIs on-the-fly, possibly even in the
middle of an expert review.

In this paper, we present a brief overview of GISpL as well
as some usage examples of our reference implementation.
We demonstrate its capabilities by the example of a multi-
channel audio mixer application being used with several dif-
ferent input modalities. Moreover, we present exemplary
GISpL descriptions of other gestural interfaces and conclude
by discussing its potential applications and future develop-
ment.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces. - Graphical user interfaces.

General Terms
Design, Standardization, Human Factors

Author Keywords
interaction, user interface, formal language, gestures

INTRODUCTION
Gestural human-computer interfaces have already been pre-
sented decades ago, with one of the earliest examples being
the use of a ”flick” gesture in SketchPad [21] from 1964. De-
spite these early beginnings, it is only during the last decade
that we have seen a notable increase in the width and depth
of gestural interfaces.

In the context of this article, we use ”gesture” in the widest
possible sense, meaning any kind of motion-based command
directed from the user to the interface. Examples for such
”gestural” interfaces include multitouch surfaces, pen-based
UIs, tangible interfaces or those based on free-air hand ges-
tures. What unites these types of UIs from a highly abstract
point of view is that they detect a specific subset of the mo-
tions executed by one or more users and react to them.

When approaching the development, design and usage of
such systems from this generic viewpoint, the primary ques-
tion is how to describe these motions to the UI system in
an unambiguous, machine-readable way. To this end, we
present GISpL, the Gestural Interface Specification Lan-
guage. GISpL is used to describe the expected motions of
the user(s) to a generic gesture recognition engine. Design-
ing a gestural UI using GISpL offers advantages to several
distinct groups of users:

233

Developers, for example, can avoid tasks such as the tedious
reimplementation of algorithms for custom gesture recogni-
tion. In addition, the effort needed to port an application
to a different type of input device is reduced considerably.
Existing frameworks for the development of gestural inter-
faces mostly recognize only a fixed set of gestures and are
designed for a single type of input device.

User interface researchers can also benefit from using GISpL.
In a setting such as an expert review of a prototypical UI, the
option to quickly reconfigure an interface based on GISpL
can help to immediately integrate the reviewer’s suggestions
and receive additional feedback on the changes. Addition-
ally, GISpL descriptions are much easier to compare across
different UIs and might even offer a way to present gestures
in research publications.

Finally, end users can take advantage of a GISpL-based in-
terface. Expert users in particular can customize the inter-
face according to their own preferences. This is not possible
with most existing gestural UIs. Even those users who do
not wish to apply any customization benefit from the consis-
tent behavior across different devices resulting from the use
of a common gesture recognition engine.

RELATED WORK
There exists a wealth of frameworks for the development of
user interfaces for novel input devices. Examples include
DiamondSpin [20], the Microsoft Surface SDK [16], PyMT
[8] and MT4j [15] for multi-touch devices or Papier-Mâché
[13] and Phidgets [6] for tangible input. However, all of
these software packages share two limitations: a) they have
been designed with a single class of input hardware in mind
and b) the behaviour of the UI elements is governed by hard-
coded rules.

Some approaches have been presented which aim to intro-
duce a cleaner separation between the movements executed
by the user and the actions taken by the user interface, i.e.
between the detection of movement and its interpretation.

In this context, the topic of multi-touch input has been a
particular focus of attention. Scholliers et al. [18] present
a declarative language for describing multitouch gestures,
similar to an UML-based language by Khandkar et al. [12].
Kammer et al. [11] discuss general aspects of the formal-
ization of such gestures. Wobbrock et al. [23] introduce
a system where users are able to define gestures for certain
actions themselves, thereby allowing customization to a lim-
ited degree.

LADDER by Hammond [7] aims to provide a generalized
framework for sketching diagrams in specific task domains.
Squidy by König et al. [14] provides a configurable hard-
ware abstraction layer which generates data in the common
TUIO format [10] from a variety of input modalities. Drag-
icevic et al. [3] present the ICON toolkit which can be
adapted to arbitrary input devices using a graphical editor.
Serrano et al. [19] introduce the OpenInterface framework,
following a similar approach with a dataflow editor used

to connect components for transforming input data. While
these two systems already attempt to generalize input across
different types of input devices, they do so in an informal
way, relying on custom components in the dataflow graph.

An even more generic position is taken by the Human Markup
Language [1] which tries to capture all aspects of interper-
sonal communication, including gestures, in an XML-based
formalism.

When reviewing this existing body of work, it becomes ap-
parent that there is a significant interest in a more generic
approach towards gestural user interfaces. GISpL aims to
provide this generic approach in a formal and fully device-
independent way, building on our previous architectural work
presented in [4, 5].

EXAMPLE USAGE SCENARIOS
To better motivate the development of GISpL, we will first
present two example usage scenarios.

Object Transformations
A common demonstration of the capabilities of multi-touch
interfaces is to present a set of objects, usually images,
which can be translated, rotated and scaled using two or
more fingers.In most cases, an affine transformation matrix
is calculated from the touch points and applied to the object.
When using GISpL to represent such an interface, a differ-
ent approach is possible. The transformations executed by
the user result in a stream composed of separate move, scale
and rotate events. The developer can simply choose to ig-
nore some classes of events to create interface objects which
exhibit only a subset of behaviors without having to decon-
struct and modify any transformation matrices. Moreover,
each transformation class can be mapped to a different type
of input. For example, movement of items could be mapped
to touch events while rotation is controlled by means of a
tangible object without any changes to the application.

Input-Agnostic Audio Mixer

Figure 2. Using a multi-channel audio mixer application with multi-
touch input.

In this scenario, we will consider a multi-channel audio
mixer application which can be used with a variety of novel
interaction devices as well as with a regular desktop inter-
face (see Figures 1 and 2).

234

Desktop Interface. All elements of the interface can be con-
trolled using drag-and-drop operations or the mouse wheel.
On desktops systems such as X11 v7.5 which support the
concurrent use of several mice, multiple users can interact
with the interface simultaneously.

Multi-Touch Table. On a horizontal multi-touch device, each
mixer block can be separately transformed and translated
to support several users on various sides of the table. Dials
can be rotated using single- and multi-touch gestures.

Tangible Input. Dials and sliders can be moved and rotated
using physical handles.

Using GISpL enables the developer to decouple the actions
possible on each UI element from the motions needed to trig-
ger these actions. Dial widgets, for example, always react to
rotate events, regardless of how these events have been trig-
gered. For most types of input devices, an intuitive mapping
from motions to actions can be found. A collection of pre-
sets can be provided by the developer, giving the option of
later modification by the user.

CONCEPTUAL MODEL OF GISPL
GISpL offers a means to formally describe a large variety of
user motions which may occur in novel user interfaces. To
this end, it uses the two central concepts of gestures and fea-
tures. Gestures correspond to events triggered by the users’
actions and are composed of one or more features which are
simple mathematical properties of the raw input data. This
input data is generated by one or more classes of input ob-
jects, i.e. physical entities which can be detected by the re-
spective input hardware. The hardware generates a stream
of input events which are used to calculate feature values. In
most cases, a set of temporally concurrent input events will
be delivered as a group in one input frame.

As a canonical way of delivering input events, we have se-
lected the widely used TUIO protocol [9] which is supported
by the majority of NUI input devices. TUIO 2.0 conve-
niently defines a range of input object classes which cover
a wide range of input devices such as touchscreens, tangible
objects, pens or free-hand input. An input object is identified
by a unique numeric ID for its lifetime. For a touch point on
a multi-touch screen, this may be the duration of the contact
between screen and finger, while a tagged tangible object
may exhibit the same identifier over and over, even if it is
temporarily out of range. GISpL itself does not deal with
the generation of TUIO events from raw sensor data, but re-
lies on third-party software such as, e.g., CCV [17] for this
task. Consequently, it is also the responsibility of the exter-
nal software to properly convert sensor data into a suitable
TUIO representation on which GISpL then acts.

Input events are spatially filtered by a list of regions (i.e.,
closed polygons) which are provided by the application. Ev-
ery region contains an independent set of gestures. The need
for such spatial filtering becomes apparent when compar-
ing the behavior of the various UI elements in our second
scenario. For example, a single touch point moving over a
slider widget will result in move events representing a linear

offset, whereas the same motion tangential to a dial widget
should generate rotate events representing an angular off-
set. This spatially dependent interpretation of similar mo-
tions is achieved by means of separate regions. The various
regions comprising our example application and their spa-
tial ordering are illustrated in Figure 3. Incoming events are
checked against an ordered list of regions, starting from the
top. When an input event falls within a region, the event is
captured by that region and checking is terminated. For more
complex multi-modal UIs, specific regions can be selectively
made ”transparent” to input objects of certain types, allow-
ing those to be captured by lower regions.

top-level container

mixer element

volume slider

mute checkbox

balance dial

...

Figure 3. Layered regions in the audio mixer application. Lower re-
gions are darker.

An overview of the entire GISpL processing pipeline is
shown in Figure 4.

GISpL Example
In order to create a machine-readable description of the con-
cepts described above, these have to be expressed in a for-
mal language. The design of this language was based on
three goals: easy to parse, easily readable by humans and
compact. JSON [2] offers a good balance of these goals and
consequently forms the basis for GISpL. Its usage is best
presented by means of an example, describing a horizontal
left-to-right swipe with two fingers (see Figure 5).

The outermost object represents the whole gesture with its
name, a number of optional flags and the list of features.
Each feature in turn consists of a feature class, a filter bit-
mask1 for the types of input objects and a list of constraints
which depend on the feature in question. For both features,
the filter value of 2046 represents a bitmask (11111111110)
matching all object classes corresponding to fingers. A list
of GISpL object classes (a superset of those defined by
TUIO 2.0) is given in table 1.

In the case of the Count feature which represents the num-
ber of input objects that are currently present, the constraints
describe a lower and upper boundary within which the value
must fall. The same applies to the Motion feature which rep-
resents the overall motion vector of the input objects. How-
ever, since this is a vector-valued feature, the boundary val-
1For better readability, named constants would be preferable, how-
ever, JSON does not offer this feature.

235

GISpL Interpreter

Input
Events

Input Objects

A

Gesture
Presets

ApplicationGesture
Events

Gesture
Definitions

Regions Features Gestures

Features Gestures

...

Region 1

Region 2

Figure 4. GISpL processing pipeline

Class ID Description
0 unknown object
1 generic finger (=̂ right index finger)
1-5, 6-10 individual fingers on right,left hand
11-17 pointing devices (stylus, laser pointer,

mouse, trackball, joystick, Wiimote,
eye/gaze tracker)

18-19 tangibles (generic/tagged with ID)
21-23, 24-26 right/left hand (open/pointing/closed)
27-30 right/left foot, head, person

Table 1. GISpL object classes

ues are given as two vectors which are applied component-
wise. All values have the same dimensions as given in the
TUIO 2.0 specification.

{
 "name":"two_finger_swipe",
 "flags":"sticky,oneshot",
 "custom":"userdata",
 "features":[
 {
 "type":"Count",
 "filters":2046,
 "constraints":[2,2],
 "result":[]
 },{
 "type":"Motion",
 "filters":2046,
 "constraints":[
 [0.01,-0.01,-0.01],
 [0.1,0.01,0.01]
],
 "result":[]
 }
]
}

Gesture

Feature 1

Feature 2

Figure 5. Example gesture description in GISpL

This definition is supplied to the GISpL interpreter by the ap-
plication. When later the motions of the input objects result

in feature values which fall within their respective constraint
values, then the gesture is triggered and a corresponding ges-
ture event is delivered to the application. This event is in a
very similar format, the sole difference being that the con-
straint values are omitted and a result value is instead sup-
plied for each feature. As this gesture has the oneshot flag
set, it is sent only once for a set of input IDs. This means, for
example, that as long as two fingers remain in contact with
the surface and their IDs consequently do not change, only
a single event will be triggered, even if the same motion is
executed again without lifting them up. After one or more
of the touch points have disappeared, the input IDs are reset
and the gesture can be re-triggered. As the gesture is also
flagged as sticky, the participating input objects will ”stick”
to the original region, even if their path later crosses other
regions. This avoids spurious interactions that might other-
wise happen after the primary gesture was triggered.

Feature Types
GISpL currently provides 11 feature types which are grouped
into two classes, single-match and multiple-match features.
Single-match features will only generate a single result value
irrespective of the number of input objects that are present
and will consequently only trigger at most a single gesture
event per input frame. In contrast, multiple-match features
can generate one result value per input object and will there-
fore potentially generate as many gesture events as there are
input objects. An overview of all available features is given
in Table 2.

To provide fine-grained control over the conditions which
have to be fulfilled for a gesture to be triggered, every feature
exhibits a number of constraint values. Depending on the
feature type, these constraints may represent, e.g., a lower
and upper boundary value, a template path or a bounding
box. A gesture can only be triggered when all features match
their respective constraints.

Consequently, a gesture may be regarded as a conjunction of
several boolean-valued functions. Nevertheless, it is possi-
ble to express arbitrary boolean functions over the set of fea-
tures. By defining several gestures with the same name but
different sets of features, a composite gesture corresponding
to a disjunctive normal form can be represented. Negation
of a feature can be achieved through inverted constraints.

236

Table 2. GISpL feature types

Single-Match Features
Name Type Unit Constraints Description
Count Integer dimensionless lower/upper bound Number of input objects in region (e.g., num-

ber of touch contact points)
Delay Float seconds lower/upper bound Duration since last change in input object set

(e.g., seconds since last touch contact entered
region)

Path Float dimensionless template path Accuracy of match between template path and
actual path travelled by input objects (supports
shape-based gestures as described in [24])

Motion Vector TUIO units1 / s lower/upper bound
(per component)

Average motion vector of all input objects in
region

Rotation2
- MultiPointRotation
- RelativeAxisRotation

Float rad / s lower/upper bound Relative rotation of the input objects with re-
spect to their starting positions

Scale2
- MultiPointScale
- RelativeAxisScale

Float 1 / s lower/upper bound Relative size change of input objects with re-
spect to their starting positions

Multiple-Match Features
Name Type Unit Constraints Description
Position Vector TUIO units1 bounding box Positions of all individual input objects (e.g.,

all tangible objects within region)
ID Integer Object ID lower/upper bound Numerical IDs of input objects (e.g., for iden-

tification of tagged tangible objects)
ParentID Integer Object ID lower/upper bound Numerical IDs of parent objects for parent-

child relation (e.g., for recognition of hand and
matching fingers)

Dimensions Vector
triple

TUIO units1 lower/upper bound
(per component)

Physical dimensions of objects as described by
equivalent ellipse (e.g., for matching objects of
certain shape)

Group Integer TUIO units1 minimum/maximum
group radius

Group of input objects as specified by min-
imum & maximum radius of group (e.g.,
for matching groups of closely spaced touch
points)

1 TUIO units range from 0.0 to 1.0 in all dimensions and cover the entire sensor range in each dimension, e.g. the X axis of a touchscreen.
2 These features both exist in two variants which react to the relative rotation and scale change of either a single object or of a group of point-like objects.

Should boolean functions still be insufficient to express more
complex interactions, it is also possible to daisy-chain sev-
eral feature blocks as shown below:

"features":[
[{ feature1.1 },{ feature1.2 }],
[{ feature2.1 },{ feature2.2 }]

]

In this example, the features 1.1 and 1.2 will be examined
first. Only if both match their respective constraints, then
processing will proceed to the second block containing 2.1
and 2.2. If, for example, every block contains a Delay fea-
ture, this can be used to represent sequences of interactions
such as a double-tap within a single gesture.

Gesture Flags
As mentioned above, gestures can be differentiated further
by specifying certain flags. The oneshot flag prevents a ges-

ture from being triggered continuously. Consider, for exam-
ple, a simple ”move” gesture: as long as the user intends
to move an object, small incremental updates of the motion
vector should be sent to the application to ensure smooth be-
havior of the graphical representation. On the other hand,
gestures such as ”touch” and ”release” represent singular
events which should be signalled only once, even if the in-
put conditions persist. Consequently, these gestures should
be flagged as oneshot.

Another important feature can be accessed by flagging a ges-
ture as default. Such gestures are added to an internal pool
of presets. When an application later specifies a gesture
without features which could normally never be triggered,
the gesture name is used to look up a potential replacement
gesture in the preset pool which has the same name. This
behavior offers a powerful method to adapt an application
to input hardware with varying capabilities. For example,
the GUI may use an empty ”rotate” gesture and rely on the
preset pool to deliver a result suitable for the present input

237

device. While this result may be generated through multi-
touch on suitable input devices, another system might in-
stead use tangibles which provide a custom definition for the
same effect. The GISpL reference implementation already
provides a number of presets for common gestures such as
move, scale and rotate.

Finally, the sticky flag causes a gesture to permanently cap-
ture the participating input objects into its containing region,
once the gesture has been triggered for the first time. This
capture remains valid as long as the input objects are tracked
and the gesture is valid, even if the input objects leave the
original region. Once one of these conditions is no longer
met, the capture is removed and the input objects can again
be captured by all regions. This flag thereby enables gestures
to continue outside their initial regions.

Matching Algorithm
We will now briefly describe the internal algorithm em-
ployed by the GISpL interpreter. This algorithm is executed
once for each complete set of input events, e.g. for one fully
processed camera image. First, input events are divided ac-
cording to the defined regions. As regions may overlap, they
are arranged in a list. The topmost region to be hit by the
input event captures this event. It is appended to an inter-
nal queue, thereby creating a history of input events for this
region. In the next step, the total set of features used per
region is determined and the result value of each feature is
calculated once from the input history. Finally, for every
gesture, the feature values determined in the previous step
are compared with their respective constraints. Should all
constraints be satisfied, then the tuple of region and gesture
is delivered to the application. A pseudo-code representation
of this algorithm is given below.

for each input event e:
for each region r:

if (e.type in r.filters)
and (e inside r):

append e to r.input_queue
continue with next event

for each region r:

if gestures in r modified:
clear r.feature_set
for each gesture g in r:

for each feature f in g:
insert f into r.feature_set

for each feature f in r.feature_set:
calculate f.value from r.input_queue

for each gesture g in r:
for each feature f in g:

check f.value against constraints
if mismatch:

continue with next gesture
send tuple(r,g) to application

Depending on the type of feature, the calculation of result
values may be performance-intensive. However, this is miti-
gated by the fact that every feature is calculated at most once
per region. Moreover, the features in one region can be cal-
culated independently of the others, thereby enabling easy
parallelization.

IMPLEMENTATION EXAMPLES
We have already presented two example usage scenarios in
which GISpL has been tested. We will now highlight some
interesting implementation aspects of these applications.

Input-Agnostic Spatial Transformations
Affine spatial transformations are one of the main interac-
tion modes used with novel user interfaces. These can be
supported using GISpL by splitting the transformation into
three separate events representing motion, rotation and scal-
ing.2 An abbreviated sample definition which would be ap-
propriate for a multi-touch screen is given below. Events
will be sent after every input frame in which objects match-
ing the filters (i.e., any type of finger) have moved within
the containing region. The ”move” event will deliver a result
value representing the average motion vector of these objects
with respect to the previous frame. The ”rotate” and ”scale”
events will contain results which describe the average rota-
tion and scale change of all contact points with respect to
their common centroid, relative to the previous frame.

[{
"name":"move",
"features":[{
"type":"Motion",
"filters":2046

}]},{
"name":"rotate"
"features":[{
"type":"MultiPointRotation",
"filters":2046

}]},{
"name":"scale"
"features":[{
"type":"MultiPointScale",
"filters":2046

}]}]

Should a different input modality be desired later, such as
using a tangible object for rotation, then the ”rotate” part of
the definition could be changed as follows:

{ "name":"rotate"
"features":[{
"type":"RelativeAxisRotation",
"filters":131072

}]}

The filter bitmask has been changed to select untagged tangi-
ble objects (object type 17), while the feature type has been
changed to react to the relative rotation of the major axis of
2Support for all affine transformations would include shearing,
however, this is not commonly used.

238

a single tracked object. As the result type stays the same
(see also table 2), the change is fully transparent to the ap-
plication. Any trackable object can be put into the on-screen
region, rotated in order to adjust the region’s rotation and
removed again. Motion and scaling can still be performed
using one or more fingers.

Using GISpL in Practice: Code Example
In order to use the GISpL matching engine in a real-world
application, this application needs to supply spatial data
about sensitive regions and gesture definitions. This can be
done in only a few lines of code, as shown in the following
C++ code snippet for a static triangular widget:

extern Matcher* g_matcher;

class MyWidget: public GestureSink {

// ...

// define spatial extents of region
Region reg;

reg.push_back(Vector(0, 0,0));
reg.push_back(Vector(100,100,0));
reg.push_back(Vector(100, 0,0));

// GISpL definition - see above
// can also be taken from user config
std::string definition = "...";
Gesture rotate(definition);

// attach gesture to region
reg.gestures.push_back(rotate);

// send region to matching engine
g_matcher->update(this, ®);

}

The global object g matcher represents the matching en-
gine. The widget registers one or more regions containing
gesture definitions with the engine, along with a reference to
the widget itself. When later an event corresponding to one
of the registered gestures is triggered, this reference is used
by the matching engine to pass the event object to a call-
back method in the widget (defined in class GestureSink,
not shown). The event object will deliver a gesture result in
binary form, obviating any need for the developer to parse
GISpL data himself. Should the event cause any modifica-
tion of the widget’s spatial extents, another call to update
can be used to send a current region definition to the matcher.

DISCUSSION
Comparing GISpL to the body of related work already listed
above, it is apparent that there hasn’t yet been any attempt
to unify gesture recognition in the widest sense across the
different paradigms for novel user interfaces that are in use
today. Of course, this leads to the question whether such an
approach is sensible - after all, there is always the possibility
that existing and/or future user interfaces may have sensing

capabilities that cannot be fully captured using such a com-
mon denominator.

However, we believe that by introducing a first attempt at
such a common denominator, we can stimulate discussion
on the common points of novel user interfaces themselves
and their development.

There are some aspects of GISpL which still offer room for
improvement. For example, the matching of input objects
to regions is done based on the input object’s centroid and
can therefore not capture objects which are intended for in-
teraction with more than one region at once. A possible way
to deal with this limitation would be to check for collisions
of an input object’s hull with regions similar to [22], thereby
enabling matches with more than one region simultaneously.

The expressive power of GISpL is dependent on the avail-
able features and their constraints. Future types of UIs may
require the introduction of additional feature classes. How-
ever, as most of the 11 current feature classes contain less
than 50 lines of C++ code, this is not an insurmountable task.

Also, even though the boundary conditions for gestures can
be thought of as arbitrary boolean functions over their fea-
tures, there may be applications where this type of expres-
sion is not powerful enough or too cumbersome. One poten-
tial extension to GISpL would be to allow arbitrary JavaScript
functions in a gesture which calculate a boolean result from
the feature values. This result would then determine whether
a gesture is triggered or not. This approach would perhaps
also mitigate the problem that GISpL descriptions, even for
simple gestures, can appear quite complex at first.

Currently beyond the scope of GISpL is textual input by
speech, keyboard or other means. One potential way to ex-
tend GISpL in this direction could be provided by adding a
feature comparing sets of given strings with a textual input
stream. The validity of this idea has to be a subject of further
study.

CONCLUSION & OUTLOOK
We have presented GISpL, a formal language that enables
the unambiguous description of gestural user interfaces across
a wide range of input devices. Developers, researchers and
users alike can benefit from the logical separation between
motions and actions. GISpL allows easier portability of ap-
plications across different input devices and enables quick
modifications of gestural interfaces which previously re-
quired changes to the source code. A full specification of
GISpL as well as an open-source reference implementation
is available at http://www.gispl.org/.

GISpL is based on fundamental concepts developed in sev-
eral projects over the course of three years. General feed-
back was very positive, with other research groups adopting
it for their applications. Continuous feedback was used for
refinement of the GISpL specification and for making the
recognition engine robust, efficient and available on all ma-
jor platforms.

239

http://www.gispl.org/

REFERENCES
1. R. Brooks. Human Markup Language Primary Base

Specification 1.0. http://www.oasis-open.
org/committees/download.php/60/HM.
Primary-Base-Spec-1.0.html. accessed
2011/03/29.

2. D. Crockford. The application/json Media Type for
JavaScript Object Notation (JSON).
http://www.ietf.org/rfc/rfc4627.txt.
accessed 2011/03/29.

3. P. Dragicevic and J.-D. Fekete. Support for input
adaptability in the icon toolkit. In Proceedings of the
6th international conference on Multimodal interfaces,
ICMI ’04, pages 212–219, New York, NY, USA, 2004.
ACM.

4. F. Echtler and G. Klinker. A multitouch software
architecture. In Proceedings of NordiCHI 2008, pages
463–466, Oct. 2008.

5. F. Echtler, G. Klinker, and A. Butz. Towards a unified
gesture description language. In Proceedings of the
13th International Conference on Humans and
Computers, HC ’10, pages 177–182, Fukushima-ken,
Japan, 2010. University of Aizu Press.

6. S. Greenberg and C. Fitchett. Phidgets: easy
development of physical interfaces through physical
widgets. In UIST ’01: Proceedings of the 14th annual
ACM symposium on User interface software and
technology, pages 209–218, 2001.

7. T. Hammond and R. Davis. Ladder, a sketching
language for user interface developers. Computers &
Graphics, 29(4):518 – 532, 2005.

8. T. E. Hansen, J. P. Hourcade, M. Virbel, S. Patali, and
T. Serra. PyMT: a post-WIMP multi-touch user
interface toolkit. In ITS ’09: Proceedings of the ACM
International Conference on Interactive Tabletops and
Surfaces, pages 17–24, New York, NY, USA, 2009.
ACM.

9. M. Kaltenbrunner. TUIO 2.0 Specification.
http://www.tuio.org/?tuio20. accessed
2011/03/29.

10. M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza. TUIO: A protocol for table-top tangible
user interfaces. In Proceedings of Gesture Workshop
2005, 2005.

11. D. Kammer, J. Wojdziak, M. Keck, R. Groh, and
S. Taranko. Towards a formalization of multi-touch
gestures. In ACM International Conference on
Interactive Tabletops and Surfaces, ITS ’10, pages
49–58, New York, NY, USA, 2010. ACM.

12. S. H. Khandkar and F. Maurer. A language to define
multi-touch interactions. In ACM International
Conference on Interactive Tabletops and Surfaces, ITS
’10, pages 269–270, New York, NY, USA, 2010. ACM.

13. S. R. Klemmer, J. Li, and J. Lin. Papier-mâché: Toolkit
support for tangible input. pages 399–406. ACM Press,
2004.

14. W. König, R. Rädle, and H. Reiterer. Squidy: a
zoomable design environment for natural user
interfaces. In Proceedings of the 27th international
conference extended abstracts on Human factors in
computing systems, CHI EA ’09, pages 4561–4566,
New York, NY, USA, 2009. ACM.

15. U. Laufs, C. Ruff, and J. Zibuschka. MT4j - A
Cross-Platform Multi-Touch Development Framework.
June 2010.

16. Microsoft Corporation. Surface SDK.
http://www.microsoft.com/surface/
Pages/Product/Platform.aspx, 2009
(accessed 2009-31-12).

17. NUI Group Community. Community Core Vision.
http://ccv.nuigroup.com/, accessed
2009-07-06.

18. C. Scholliers, L. Hoste, B. Signer, and W. De Meuter.
Midas: a declarative multi-touch interaction
framework. In Proceedings of the fifth international
conference on Tangible, embedded, and embodied
interaction, TEI ’11, pages 49–56, New York, NY,
USA, 2011. ACM.

19. M. Serrano, L. Nigay, J.-Y. L. Lawson, A. Ramsay,
R. Murray-Smith, and S. Denef. The openinterface
framework: a tool for multimodal interaction. In CHI
’08 extended abstracts on Human factors in computing
systems, CHI EA ’08, pages 3501–3506, New York,
NY, USA, 2008. ACM.

20. C. Shen, F. Vernier, C. Forlines, and M. Ringel.
DiamondSpin: an extensible toolkit for
around-the-table interaction. In CHI ’04: Proceedings
of the Conference on Human Factors in Computing
Systems, pages 167–174, 2004.

21. I. E. Sutherland. Sketchpad - a man-machine graphical
communication system. In Proceedings of the SHARE
design automation workshop, DAC ’64, pages
6.329–6.346, New York, NY, USA, 1964. ACM.

22. A. Wilson, S. Izadi, O. Hilliges, A. Garcia-Mendoza,
and D. Kirk. Bringing physics to the surface. In UIST
’08: Proceedings of the 21st annual ACM symposium
on User interface software and technology, pages
67–76, New York, NY, USA, 2008. ACM.

23. J. O. Wobbrock, M. R. Morris, and A. D. Wilson.
User-defined gestures for surface computing. In CHI
’09: Proceedings of the 27th international conference
on Human factors in computing systems, pages
1083–1092, New York, NY, USA, 2009. ACM.

24. J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures
without libraries, toolkits or training: a $1 recognizer
for user interface prototypes. In UIST ’07: Proceedings
of the 20th annual ACM symposium on User interface
software and technology, pages 159–168, 2007.

240

http://www.oasis-open.org/committees/download.php/60/HM.Primary-Base-Spec-1.0.html
http://www.oasis-open.org/committees/download.php/60/HM.Primary-Base-Spec-1.0.html
http://www.oasis-open.org/committees/download.php/60/HM.Primary-Base-Spec-1.0.html
http://www.ietf.org/rfc/rfc4627.txt
http://www.tuio.org/?tuio20
http://www.microsoft.com/surface/Pages/Product/Platform.aspx
http://www.microsoft.com/surface/Pages/Product/Platform.aspx
http://ccv.nuigroup.com/

	INTRODUCTION
	RELATED WORK
	EXAMPLE USAGE SCENARIOS
	Object Transformations
	Input-Agnostic Audio Mixer

	CONCEPTUAL MODEL OF GISPL
	GISpL Example
	Feature Types
	Gesture Flags
	Matching Algorithm

	IMPLEMENTATION EXAMPLES
	Input-Agnostic Spatial Transformations
	Using GISpL in Practice: Code Example

	DISCUSSION
	CONCLUSION & OUTLOOK
	REFERENCES

