
A System Architecture for Ubiquitous Tracking Environments
Manuel Huber Daniel Pustka Peter Keitler Florian Echtler Gudrun Klinker∗

Technische Universität München
Fakultät für Informatik

Boltzmannstraße 3
85748 Garching b. München, Germany

ABSTRACT

Ubiquitous tracking setups, covering large tracking areas with many
heterogeneous sensors of varying accuracy, require dedicated mid-
dleware to facilitate development of stationary and mobile applica-
tions by providing a simple interface and encapsulating the details
of sensing, calibration and sensor fusion.

In this paper we present a centrally coordinated peer-to-peer ar-
chitecture for ubiquitous tracking, where a server computes optimal
data flow configurations for sensor and application clients, which
are directly exchanging tracking data with low latency using a light-
weight data flow framework. The server’s decisions are inferred
from an actively maintained central spatial relationship graph using
spatial relationship patterns.

The system is compared to a previous Ubitrack implementation
using the highly distributed DWARF middleware. It exhibits signif-
icantly better performance in a reference scenario.

Index Terms: I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Tracking H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 MOTIVATION

In industrial augmented reality scenarios, there is a growing de-
mand for integrated working environments which span large fac-
tory buildings. In such an environment, many different mobile and
stationary AR-supported applications, such as logistics, production,
maintenance or factory planning may coexist and require shared ac-
cess to permanent tracking with varying accuracy requirements. To-
day, no single technology exists that satisfies the tracking require-
ments of all these applications and can – at least for a reasonable
price – be deployed throughout such an environment. For this rea-
son, in a realistic setup, many different tracking systems would be
installed ranging from low-precision wide-area WLAN tracking to
infrared-optical systems covering only small areas with high accu-
racy. The installation, maintenance and expansion of such a large-
scale heterogeneous tracking environment poses new challenges to
the underlying middleware concepts.

Heterogeneous wide-area tracking environments Emerg-
ing tracking methods based on technologies like WLAN or RFID
provide the possibility to deploy tracking to ever-enlarging indoor
areas. With increasing tracker coverage, a larger diversity of AR ap-
plications will need to share this tracking infrastructure. Stationary
applications that are already in use will more and more be com-
plemented by mobile applications that would have been completely
impossible without wide-area tracking. Also, applications that are
stationary today, might benefit from enlarging tracking areas and

∗e-mail: { huberma, pustka, keitler, echtler, klinker }@in.tum.de

become more adaptive and better integrated in the productive envi-
ronment. Many of these wide-area tracking systems have the draw-
back of being rather imprecise. Nevertheless, they serve quite well
for navigation problems and can thereby bridge the gap between is-
lands of higher tracking accuracy. Furthermore, they can provide
useful initial positions to other sensors, such as markerless optical
trackers [7]. There are also many examples where a fusion of mea-
surements from different mobile and stationary sensors improves
overall tracking quality and robustness, e.g. [4].

Separation of tracking from applications Since multiple ap-
plications shall be able to use a common infrastructure, it is neces-
sary to decouple this infrastructure from application development
and operation. Existing AR applications are normally tightly cou-
pled with the underlying tracking system. This means that adminis-
trative tasks relating to the tracking system are normally integrated
in the application itself. Encapsulation of the tracking infrastruc-
ture in a middleware facilitates administrating and calibrating the
environment independently of the applications. On the other hand,
tracking systems produced by different manufacturers usually come
with different drivers and APIs. A suitable tracking middleware
has to provide the necessary abstractions from such implementa-
tion details. To allow an easy exchange of different types of track-
ing systems, the details about the numerous different coordinate
frames involved also need to be hidden from the application devel-
oper. Seamless handover of mobile applications between different
tracking areas requires in particular that this abstraction can be dy-
namically reconfigured at runtime.

1.1 Proposed Approach
Ubiquitous tracking (Ubitrack) is a middleware concept for track-
ing. It supports distributed applications to use a common, heteroge-
neous sensor network. Our goal is not the invention of new sensors,
nor is it the development of new algorithms for tracking, calibration
or sensor fusion but rather the integration of these existing compo-
nents into a single framework where an intelligent middleware auto-
matically selects the best algorithms to transform and fuse tracking
data, based on available sensors, application needs and client capa-
bilities. In the ideal case, the Ubitrack system should perform as
well as a hand-tuned system in providing accurate tracking data.

1.2 Related Work
Software to construct data flow networks for abstraction and pro-
cessing of sensor data for AR and VR applications already ex-
ists, with the two most prominent examples being OpenTracker
[12] and VRPN [13]. Such data flow networks constitute one of
the most important building blocks of ubiquitous tracking environ-
ments and provide the necessary transformation and network trans-
port of tracking data. However, to date, these software libraries
need to be manually configured for each tracking situation and can-
not handle dynamic changes, such as the addition of a new sensor
at runtime.

In the pervasive computing community, many approaches exist
to handle user context and/or location [3, 5, 2]. While, similar to the
proposed approach, these systems include models for abstraction



of sensor data, they focus on a much broader diversity of sensors
than those used in typical AR/VR setups. As location in pervasive
computing is usually needed to generate discrete location events,
e.g. when somebody enters a building, low-latency data processing
and transport is not considered critical.

In our previous work [8] we have successfully demonstrated a
Ubitrack system that dynamically instantiates data flow compo-
nents to convert 6DOF tracking information from various sources
into a target coordinate system convenient for the application pro-
grammer. Unfortunately, the system did not have the required per-
formance for larger setups in terms of processor load and reaction
time to structural changes in the environment. This was mostly
caused by the underlying DWARF middleware. A detailed compar-
ison will be presented in Section 3. We also recently introduced
the concept of spatial relationship patterns [10]. It provides the for-
mal framework in which different algorithms for tracking, calibra-
tion and sensor fusion can be described and automatically selected,
depending on the current sensing constellation. The reader is re-
ferred to [10] for details about these concepts as well as [9] which
discusses related synchronization issues in generated dataflow net-
works.

2 UBITRACK SYSTEM ARCHITECTURE

In this section, the Ubitrack system architecture is outlined. The
key aspects of the philosophy behind Ubitrack have already been
described in Section 1. The requirements towards the architecture
will be substantiated in the following before giving an overview of
the chosen approach and describing the individual components in
more detail.

Dynamic reconfigurations In a production environment
where several applications are running in parallel using the same
common tracking infrastructure, it is not admissible to shut down
the whole environment for maintenance tasks such as the recalibra-
tion of an existing or the integration of a new sensor. Furthermore,
in some scenarios, it is necessary to cope with a dynamically chang-
ing number of trackable objects and even with mobile applications
(dis)appearing at runtime and moving between different trackers.

Efficient communication of tracking data at runtime Inter-
posing a tracking middleware must not lead to a degradation in
tracking quality. This especially means that sensor measurements
have to be transported and processed as fast as possible so that there
is no delay for the AR-application that would not also be existent if
the middleware were not used.

Queries for involved objects and transformations Applica-
tions have to be able to query for available objects and their spatial
relationships. This is a direct consequence of separating the track-
ing and application domains. If applications are developed without
knowing the concrete layout of the underlying tracking environ-
ment, they have to express their needs regarding available objects
and the spatial relationship(s) between them in some way.

Varying capabilities of the participating application plat-
forms Especially for mobile AR applications running on PDAs,
the available interfaces and also the computing power is often lim-
ited. In order to provide them with high-quality tracking result-
ing from different sensors and computationally expensive sensor
fusion, the only solution may be to attach the sensors to another
machine and also to source out some or all of the computations.
The final results can then be transmitted via network and directly
consumed by the visualization module on the mobile device.

2.1 Overview
With the mentioned requirements in mind, we decided to use a cen-
trally coordinated peer-to-peer architecture for the Ubitrack mid-
dleware, availing from the advantages of both a pure client-server

and a peer-to-peer architecture. Figure 1 gives an overview over the
Ubitrack environment.

Compared to the pure peer-to-peer approach described in [8], the
coordination and maintenance of a tracking environment is much
easier using the client-server-approach. For the highly time-critical
propagation of tracking data, however, we benefit from using the
shortest communication paths between suppliers and consumers,
avoiding latency due to the indirection via a server and, as a con-
sequence, avoiding also the corresponding processing load for the
server.

The individual components of the Ubitrack system architecture
are described in more detail in the next sections.

2.2 Clients
A client in the Ubitrack environment is an entity that is involved
in the flow of tracking data. It can run on a dedicated hardware
platform, though this is not a requirement. For all functionality
related to tracking, the application software running on the client
relies on the Ubitrack library. The application uses the API of the
library in order to register its base SRG(s) describing the spatial
relationships between locally connected sensors and other real or
virtual objects at the Ubitrack server. Furthermore, using the same
mechanism, it also registers its requirements towards the tracking
systems in terms of application queries. The server coordinates the
requests of all clients and assigns a data flow network to each of
them.

For the purpose of clarity, we outline two archetypical types of
clients (see also Figure 1), although very often, the client will be a
mixture of both.

Sensor client A sensor client provides tracking data to the rest of
the system. For this purpose, it instantiates a data flow net-
work which uses the measurements of the sensors it owns,
potentially filters and/or fuses them and finally feeds the re-
sults into the peer-to-peer network so that they can be further
processed in data flow networks running on other clients. The
actual sensor hardware is treated as a black box interfacing
with the Ubitrack library using vendor specific APIs.

Application client The application client is the exact counterpart
of the sensor client. It is a pure consumer of tracking data and
relies on the data flow networks of other clients to provide it
with the data it needs. The most simple data flow network
of an application client consists of just two data flow compo-
nents, one receiving data from the peer-to-peer network and
another handing it over to the application.

The clients themselves consist of different components.

Application The application software relies on the API of the
Ubitrack library for all purposes related to tracking. Furthermore,
it may perform other more or less complex tasks. A typical AR ap-
plication for example would register a query for the transformation
of some virtual objects to the HMD coordinate frame and use the
tracking results to render them in the HMD.

Ubitrack Library The Ubitrack library encapsulates all com-
munication between the client and the Ubitrack server and provides
means to instantiate a data flow network according to the descrip-
tion constructed by the server.

Before the server can compute descriptions of suitable data flow
networks, the client applications first have to announce their track-
ing abilities and needs via the API of the library. A pure sensor
client on the one hand registers only SRG parts describing sensors,
tracked objects and known spatial relationships between them. An
application running on a pure application client on the other hand
registers only queries describing the application’s need(s) in terms
of objects and spatial relationships satisfying certain predicates.



Ubitrack Client Datenfluss-
Netzwerk

Anwendung 1

Ubitrack Server

P2P
Network-Transport

Ubitrack Library
Data Flow
Network

Sensor Client

Ubitrack Library
Data Flow
Network

Hybrid Sensor-/Application Client

Ubitrack Library
Data Flow
Network

Application Client

Sensor

Figure 1: Ubitrack Architecture overview

Of course, the application can also change or delete SRG parts or
queries previously registered at any time without restarting the sys-
tem. SRG updates and queries are registered by the application
via the API in the Ubiquitous Tracking Query Language (UTQL)
format and are handed over to the server. The UTQL description
is heavily based on the pattern abstraction of spatial relationship
graph transformations to express registrations, client abilities and
queries in a uniform way. See [11] for an in-depth discussion of
UTQL.

The Ubitrack library also uses UTQL to register data flow com-
ponents it is able to instantiate as part of its data flow network.
Again this is done by describing their spatial relationship patterns
and communicating a list of available patterns to the server. These
lists of available SR patterns may differ from client to client due to
differing library versions or computing power.

Dynamically Reconfigurable Data Flow Network The Ubi-
track library provides a set of light-weight data flow components for
the creation of data flow networks. The data flow components are
dynamically instantiated and connected in order to establish a data
flow network according to the description generated by the Ubitrack
server. Each time the global data flow description is rearranged by
the server, induced by some change in the list of registered SRGs,
the affected clients rearrange their data flow network accordingly
on the fly.

2.3 Ubitrack Server
The Ubitrack server is the central coordination unit of the system.
It administrates a list of all base SRGs, application queries and SR
patterns that may be registered and deregistered by the participat-
ing clients at runtime. All currently registered base SRGs together
make up the world SRG. It represents the general knowledge about
the tracking environment provided by the clients and changes when-
ever the list of registered base SRGs changes.

The Ubitrack server always tries to fulfill all registered queries.
For this purpose it applies the registered SR patterns to the world
SRG with the purpose of somehow deriving the SRG edge denoted
by the query. As soon as the server succeeds in finding a sequence
of pattern applications in order to derive a queried edge, it commu-
nicates this knowledge to the client the query came from. In case
tracking data has to be provided by other clients via the peer-to-
peer network in order to compute edges contained in the query, the
server also updates the data flow description of the other clients.
Thereby, it also considers the varying client capabilities.

It is important to state that the Ubitrack server itself does not
know anything about the underlying data flow algorithms. Its
derivations merely depend on the question about which constella-
tion of edges in the SRG is necessary so that a certain SR pattern

can be applied in order to provide a new edge.

2.4 Management Tools
Management tools are used for the configuration of a tracking en-
vironment in the design phase as well as for applying and monitor-
ing dynamic reconfigurations at runtime. There are two main tasks
which are assisted by these tools:

Design phase The design phase mainly comprises modeling
the base SRGs that describe the transformations (edges) between
different coordinate frames (nodes) in the world as it is seen by the
different clients. For this purpose we have implemented a graphical
editor to facilitate the process of creating new SRGs which can then
be used by the corresponding client applications to register their
abilities and needs towards the tracking environment.

Runtime While the tracking environment is in operation, an
administration tool is able to provide insights into the internals of
the Ubitrack server, namely the current list of registered base SRGs,
SR patterns and application queries per client as well as the current
world SRG and the data flow networks derived from it.

3 RESULTS

To evaluate the system architecture, we implemented a simple sce-
nario that allows us to gain insights into the performance of the
system. The scenario is similar to the one presented in [6], but with
a more complex spatial relationship graph.

The scenario consists of a pastoral landscape on which a herd of
virtual sheep is grazing. In order to increase the complexity of the
SRG, the sheep implement some herding behavior and therefore re-
quire the position of each other. The pasture with the herd of sheep
is visualized inside an HMD, tracked by an infrared-optical outside-
in tracking system (ART DTrack). To have more distinct coordinate
frames in the setup, we also added a tangible plastic sheep, directly
tracked by the outside-in tracker. An additional tangible sheep was
placed on an AR-Toolkit-like square marker, tracked by a firewire
camera. Its pose was again tracked by the outside-in tracker.

The visualization inside the HMD was produced using a sepa-
rate rendering client, which sent out a single UTQL query for all
renderable objects.

As the first qualitative result, the system was able to provide the
coordinates of all renderable objects (landscape, virtual and tangi-
ble sheep) in the coordinate frame of the HMD, even though the
objects were provided in different coordinate frames. The server
also correctly inserted synchronization components (interpolation)
into the data flow network where necessary. Additional sheep could
be added to the system at any time.

At run-time, the system had a latency comparable to a hand-
tuned implementation, because all the tracking computations for



visualization took place inside the rendering client using our light-
weight data flow framework.

Comparison to DWARF For quantitative evaluation of the new
architecture, we compared it to our first implementation of a Ubi-
track system [8], based on the DWARF [1] middleware. To our
knowledge, this is the only system with a comparable (although
more limited) functionality. The most significant differences be-
tween the two implementations are:

The two implementations differ in a number of ways: First, the
DWARF system is highly distributed without a central instance for
coordination. Instead, computers broadcast their “needs and abili-
ties” in a peer-to-peer fashion. Second, each DWARF service (com-
parable to a data flow component) runs in an independent operating
system process. Communication between services is done using
CORBA, with a high overhead of process switching. Finally, the
generation of data flow graphs in DWARF is based on a path-search
in graphs. This is roughly comparable to the pattern matching when
only the inversion and concatenation patterns are used.

We implemented the scenario described above using both ar-
chitectures and measured both response time with regard to SRG
changes and system load on the rendering client.

Response Time The time from the addition of a new virtual
sheep to the arrival of the first tracking data at the rendering client
took an average of 13 seconds using the DWARF-based implemen-
tation whereas the centrally-coordinated architecture required only
35ms for a single sheep. When 10 sheep were added simultane-
ously, the DWARF implementation took 22s vs. 280ms. Further-
more, the DWARF system was not usable during reconfiguration as
no tracking data was delivered. Setting up an SRG of 30 virtual
sheep was impossible in DWARF, because of limitations in the un-
derlying libraries and network protocols, but required only 1s in the
new architecture. In this case, the extra time needed by the centrally
coordinated peer-to-peer architecture was mostly consumed by the
pattern detection. Thus, by further improvement of the algorithms,
the total system performance can be improved without architectural
changes.

Processor Load Data flow networks constructed using
DWARF services consume significantly more processor time, be-
cause each service is a separate process, that uses CORBA for com-
munication. In our experiments, the system already had a load of
100% with only 10 sheep posting their position at a frequency of
30Hz. In contrast, the centrally coordinated architecture, running
30 sheep, merely produced a processor load of about 4%. This ex-
ample dramatically shows the importance a light-weight data flow
framework with little communication overhead.

4 CONCLUSION AND FUTURE WORK

The specification of tracking environments as a spatial relationship
graph is a new way to deal with large-scale heterogeneous systems.
By describing processing capabilities and queries as spatial rela-
tionship patterns, specified in UTQL, a large diversity of clients
can coexist and exchange data in such an environment, without ap-
plication developers needing to worry about the details of different
trackers and coordinate systems.

Our experiments showed that the centrally coordinated peer-to-
peer architecture is well suited to implementing ubiquitous track-
ing environments, as it combines the advantage of a quick response
time of a centralized server (as compared to a completely dis-
tributed system) with the low communication overhead of direct
peer-to-peer communication.

Although the evaluation of the initial implementation gave very
promising results, there is much room for improvement, both in
functionality and algorithmic performance. In particular more ad-
vanced strategies for pattern application in the server and support

for queries involving concepts such as spacial proximity deserve
future attention.

ACKNOWLEDGEMENTS

This work was supported by the Bayerische Forschungsstiftung
(project TrackFrame, AZ-653-05) and the PRESENCCIA Inte-
grated Project funded under the European Sixth Framework Pro-
gram, Future and Emerging Technologies (FET) (contract no.
27731).

REFERENCES

[1] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher,
S. Riss, C. Sandor, and M. Wagner. Design of a component-based
augmented reality framework. In Proceedings of the International
Symposium on Augmented Reality (ISAR), Oct. 2001.

[2] G. Coulouris. Review report: The qosdream project. Technical re-
port, Laboratory for Communication Engineering, University of Cam-
bridge, 2002.

[3] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware appli-
cations. Human-Computer Interaction (HCI) Journal, 16 (2-4):97–
166, 2001.

[4] W. Hoff and T. Vincent. Analysis of head pose accuracy in augmented
reality. In IEEE Transactions on Visualization and Computer Graph-
ics, volume 6(4), pages 319–334. IEEE Computer Society, 2000.

[5] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm.
Next Century Challenges: Nexus - An Open Global Infrastructure for
Spatial-Aware Applications. In Proceedings of the Fifth Annual In-
ternational Conference on Mobile Computing and Networking (Mobi-
Com ’99), pages 249–255. Universität Stuttgart : Sonderforschungs-
bereich SFB 627 (Nexus: Umgebungsmodelle für mobile kontextbe-
zogene Systeme), Seattle, WA, USA: not available, August 1999.

[6] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, and
B. Brügge. Herding sheep: Live system development for distributed
augmented reality. In Proceedings of the International Symposium on
Mixed and Augmented Reality (ISMAR), Oct. 2003.

[7] H. Najafi, N. Navab, and G. Klinker. Automated initialization for
marker-less tracking: A sensor fusion approach. In Proc. IEEE Inter-
national Symposium on Mixed and Augmented Reality (ISMAR’04),
Arlington, VA, USA, Nov. 2004.

[8] J. Newman, M. Wagner, M. Bauer, A. MacWilliams, T. Pintaric,
D. Beyer, D. Pustka, F. Strasser, D. Schmalstieg, and G. Klinker. Ubiq-
uitous tracking for augmented reality. In Proc. IEEE International
Symposium on Mixed and Augmented Reality (ISMAR’04), Arlington,
VA, USA, Nov. 2004.

[9] D. Pustka. Construction of data flow networks for augmented real-
ity applications. In Proc. Dritter Workshop Virtuelle und Erweiterte
Realität der GI-Fachgruppe VR/AR, Koblenz, Germany, September
2006.

[10] D. Pustka, M. Huber, M. Bauer, and G. Klinker. Spatial relationship
patterns: Elements of reusable tracking and calibration systems. In
Proc. IEEE International Symposium on Mixed and Augmented Real-
ity (ISMAR’06), October 2006.

[11] D. Pustka, M. Huber, F. Echtler, and P. Keitler. UTQL: The Ubiqui-
tous Tracking Query Language v1.0. Technical Report TUM-I0000,
Institut für Informatik, Technische Universität München, 2007.

[12] G. Reitmayr and D. Schmalstieg. OpenTracker – An Open Software
Architecture for Reconfigurable Tracking based on XML. In Proceed-
ings of the ACM Symposium on Virtual Reality Software & Technology
(VRST), Banff, Alberta, Canada, 2001.

[13] R. M. Taylor, ll, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and
A. T. Helser. VRPN: a device-independent, network-transparent VR
peripheral system. In Proceedings of the ACM symposium on Virtual
reality software and technology, pages 55–61. ACM Press, 2001.


