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ABSTRACT
Smartphones in general and Android in particular are in-
creasingly shifting into the focus of cybercriminals. For un-
derstanding the threat to security and privacy it is important
for security researchers to analyze malicious software writ-
ten for these systems. The exploding number of Android
malware calls for automation in the analysis. In this paper,
we present Mobile-Sandbox, a system designed to automati-
cally analyze Android applications in two novel ways: (1) it
combines static and dynamic analysis, i.e., results of static
analysis are used to guide dynamic analysis and extend cov-
erage of executed code, and (2) it uses specific techniques to
log calls to native (i.e., “non-Java”) APIs. We evaluated the
system on more than 36,000 applications from Asian third-
party mobile markets and found that 24% of all applications
actually use native calls in their code.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Android, Malware, Application analysis

1. INTRODUCTION

1.1 Android (Malware) on the Rise
In recent years smartphone sales tremendously increased.

This explosive growth has drawn the attention of criminals
who try to attract the user to install malicious software
on the device. Google’s smartphone platform Android is
the most popular operating system and recently overtook
Symbian- and iOS-based installations. Most probably, this
growth stems from the openness of the platform which allows
a user to install arbitrary software.

But attackers are misusing this openness to spread ma-
licious applications through common Android application
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markets. In previous work [22] we analyzed about 6,100
malicious applications and clustered them into 53 malware
families with the help of the VirusTotal API [15]. Nearly
57% of our analyzed malware families tried to steal per-
sonal information from the smartphone like address book
entries, the IMEI or GPS coordinates. Additionally, send-
ing SMS messages rates with about 45%. Most common
was sending these messages to premium rated numbers to
make money immediately. The last main feature which was
implemented in nearly 20% of the malware families is the
ability to connect to a remote server in order to receive
and execute commands. Another detailed and well-readable
overview of all these existent malware families is provided
by Zhou et al. [27].

1.2 The Need for Automated Analysis
Given the enormous growth of Android malware, security

researchers and vendors must analyze more and more appli-
cations (apps) in a given period of time to understand the
purpose of the software and to develop countermeasures.
Until recently, analysis was done manually by using tools
like decompilers and debuggers. This process is very time
consuming and error-prone depending on the skill set of the
analyst. Therefore, tools for automatic analysis of apps were
developed.

The classical approach to automated analysis is static
analysis. Static analysis investigates software properties that
can be investigated by inspecting the downloaded app and
its source code only. Signature-based detection of apps, the
common approach by anti-virus technologies, is an exam-
ple of static analysis. In practice, malware uses obfuscation
techniques to make static analysis harder. A particular form
of obfuscation used by Android apps is to hide system ac-
tivities by calling functions outside the Dalvik/Java runtime
library, i.e., in native libraries written in C/C++ or other
programming languages.

In contrast to static analysis, dynamic analysis does not
inspect the source code but rather executes it within a con-
trolled environment, often called sandbox. By monitoring
and logging every relevant operation of the execution, a re-
port is automatically generated for each analysis. Dynamic
analysis can combat obfuscation techniques rather well but
can be circumvented by runtime detection methods. There-
fore, it usually makes sense to combine static and dynamic
analysis which can be done in many different ways.
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1.3 Existing Android Analysis Systems
Similar to the development in the desktop PC world, the

early systems for analysis of Android apps used a static ap-
proach. A typical system for this approach was proposed by
Schmidt et al. [20]. They attempt to extract the function
calls from an Android application (using the readelf util-
ity) and compare the resulting list with the data of known
malware. Another example for the static approach is An-
droguard by Desnos et al. [5, 6] which decompiles the appli-
cation and applies signature based malware detection. This
system is completely open source.

In response to static analysis systems in the desktop PC
world, malware authors developed various obfuscation tech-
niques that have have proven their effectiveness against static
analysis [17, 24]. This is also an emerging trend in Android
applications and it is clear that static analysis alone can-
not ensure complete analysis coverage anymore. Therefore,
researchers have begun to develop systems for dynamic anal-
ysis of Andoid apps.

One of the first such systems is TaintDroid by Enck et
al. [7]. It is an efficient and dynamic taint tracking system
which provides realtime analysis by leveraging Android’s ex-
ecution environment. This system was complemented with
a fully automated user emulation and reporting system by
Lantz [16] and is available under the name Droidbox. Droid-
box is an effective tool to analyze Android apps, however,
it lacks support to track native API calls. In fact, we are
unaware of any system that supports native API call track-
ing during dynamic analysis to date. Both tools are open
source and publicly available.

Another interesting system using dynamic analysis is pB-
MDS by Xie et al. [26]. It uses machine learning to create
user and system profiles for a specified behavior. After-
wards, it tries to correlate user inputs with system calls by
comparing their behavior profiles to detect anomalous ap-
plication activities. This system was built for Symbian OS
and tested with a very small data-set. Crowdroid, by Bur-
guera [3] uses a similar approach but with a much wider set
of behavior data and with a more advanced monitoring sys-
tem. CrowDroid uses strace, a debugging utility for Linux
and some other Unix-like systems, to monitor every system
call and the signals it receives. Crowdroid, however, does
not consider information from Android’s Dalvik VM. The
system AASandbox of Bläsing et al. [2] was the first sys-
tem combining static and dynamic analysis in a very basic
way for the Android platform. Unfortunately, AASandbox
does not seem to be maintained anymore. Another system
combining static and dynamic analysis is DroidRanger by
Zhou et al. [28]. DroidRanger implements a combination of
permission-based behavioral footprinting to detect samples
of already known malware families and a heuristic-based fil-
tering scheme to detect unknown malicious families. With
this approach they were able to detect 32 malicious samples
inside the official Android Market in June 2011. Within their
dynamic part they use a kernel module to log only system
calls used by known Android exploits or malware.

The system which is most similar to our approach is An-
drubis from the Vienna University of Technology [18]. In
their approach they also use Droidbox and TaintDroid for
automated analysis but they are limited to applications be-
neath API level 8 (Android 2.3). In contrast, we are able to
analyze applications beneath API level 11. This difference
can be very important when you compare the market-share

of API level 7 and below (17 percent) to the share of API
level 10 and below (75 percent). Additionally, they are not
able to track native code.

1.4 Contribution: Mobile-Sandbox
Overall, there are only few analysis systems that com-

bine static and dynamic analysis and none that dynamically
monitor both actions within the Dalvik VM and outside it
in native libraries. Moreover, many of these systems are
not readily available for research or are not maintained any-
more. In this paper, we seek to fill this gap by introducing
Mobile-Sandbox, a system that

1. uses a novel combination of static and dynamic analy-
sis techniques,

2. can track native API calls, and

3. is easily accessible for everyone through a web inter-
face [4].

Within the static analysis part we analyze the application
with various modules to get an overview of the application.
First, we perform several anti-virus scans using the Virus-
Total service [15], secondly, we parse the manifest file, and
finally we decompile the application to better identify sus-
picious code.

Within the dynamic analysis, we execute the application
in an emulator and log every operation of the application,
i.e., we log both the actions executed in the Java Virtual Ma-
chine Dalvik and actions executed in native libraries which
may be bundled with the application. To be best of our
knowledge, Mobile-Sandbox is the first analysis framework
for the Android platform which has this capability.

For evaluating our system we collected over 136,000 freely
available apps from the most important Asian markets and
the Google Play-Market. We also collected about 7,500 ma-
licious samples from different malware families. We then
used Mobile-Sandbox to automatically analyze 40,000 ran-
domly chosen apps from both sample sets. Within these
40,000 samples our system detected 4,641 malicious appli-
cations and additionally 5 suspicious samples which try to
hide their malicious action inside native code. This insight
clearly indicates that current analysis systems are overlook-
ing important potential threats.

1.5 Roadmap
The remainder of this paper is organized as follows: Sec-

tion 2 characterizes the current threat landscape in mobile
devices especially for malware on the Android platform and
gives some background on the Android platform. In Sec-
tion 3 we illustrate our framework and explain the main
ideas behind our static and dynamic analysis. In Section 4
we present the results of our evaluation. We conclude in
Section 5.

2. BACKGROUND

2.1 The Android Threat Landscape
Mobile threats can be categorized into two classes: web-

based and application-based threats. Web-based threats on
mobile devices are a growing attack vector used by crimi-
nals. These threats rely on the enormous usage of mobile
browsers and their feature-rich implementations. Modern
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web browsers support features like embedded video play-
ers or support for video calls. Due to the nature of these
features, e.g., parsing huge amounts of external data, the
possibility for the existence of exploitable vulnerabilities is
high. Attackers are able to trick the user to follow a web
link, sent to them via email or social media, and infect the
smartphone by exploiting a browser vulnerability.

The other type of mobile threats are application-based
threats posed by third-party applications in the mobile mar-
kets. To install applications on the smartphones the vendors
created so-called mobile markets like Apple’s “App Store”
and Google’s“Google Play”. On iOS-based devices, software
can be obtained from the App Store only. Furthermore, Ap-
ple evaluates every software uploaded to the App Store and
only adds the app if it passes certain (unknown) security
checks. On Android devices the end user is also allowed to
install apps from third-party markets. Especially in Asia a
lot of these markets emerged. Typically these third-party
markets pose a high risk to install malicious applications
due to the fact that the market owners do not evaluate the
applications.

According to Felt et al. [8], mobile applications pose the
following three types of threats – Malware, Personal Spyware
and Grayware. This illustrates that the threat landscape for
Android is real and relevant.

2.2 Android System Basics
We briefly introduce Android and its relevant parts for

this paper in this section. For a thorough introduction we
refer to Six [21].

Android is based on Linux and therefore consists of the
same core components as usual Linux distributions do. The
core components are a (patched) Linux kernel, the Bionic
libc and libraries like WebKit, SQLite and OpenGL. The
Android runtime environment consists of core libraries which
provide most functionality provided by the core Java li-
braries. It additionally consists of the Dalvik Virtual Ma-
chine which is responsible for running Android applications
in the operating system. Applications are written in the Java
language and each application is executed in its own Dalvik
VM. This VM runs dalvik-dex code which is translated from
Java bytecode. Dex code is an optimized bytecode suited
for mobile devices; the biggest difference is that dex code is
register based instead of stack based, as is “traditional” Java
bytecode.

One relevant feature of the Dalvik VM for this paper is
the ability that applications written in the Java language
can additionally access native libraries through the Native
Development Kit (NDK) which makes use of the Java Native
Interface (JNI). Developers may move performance critical
operations to native libraries (shared objects in the ELF for-
mat) which are then directly called from running dex code.
The native code contained in such libraries runs outside the
Dalvik VM directly on the processor of the smartphone or
emulator.

3. MOBILE-SANDBOX: ARCHITECTURE
AND IMPLEMENTATION

In order to determine whether an app is malicious or not,
it needs to be analyzed with great effort. Its attributes as
well as the function range need to be documented. Within
this section we describe the process of our automated analy-

sis system. The analysis process has been divided into two
parts. At first, we discuss the static analysis in Section 3.1.
The results of the static analysis are used to guide the fol-
lowing dynamic analysis which is described in Section 3.2.
The dynamic analysis automatically executes the apps on
a modified Android system with the help of the Android
emulator.

3.1 Static analysis
Our static analysis consists of several modules. In order

to gain a first impression of the application that should be
analyzed, the corresponding hash value is matched with the
VirusTotal database. The received detection rate is stored
for the report. However, it does not play a vital role within
further processing. The result that is delivered by Kaspersky
(one part of the VirusTotal scanning engine), is used for the
classification into existing malware families.

Afterwards, the application is extracted in order to get
access to its components; these are required for further ana-
lysis. As a following step, we analyze the Android manifest
to get a listing of all required permissions. For this reason
we use the tool aapt being delivered with the Android SDK
[11]. While parsing the manifest we filter the intents as well
as the services and receiver for further analysis, too. We also
read out the SDK-version; this is another important detail
to assure that only applications being compatible to the pro-
vided Android system are passed on to dynamic analysis.

Now, the Dalvik byte code that is stored in the classes.dex
file is converted to smali [10]. We can determine and fil-
ter the embedded advertising networks from the resulting
files and their directory structure as not to dilute the re-
sults of the analysis. Afterwards, the complete smali-code is
searched for potentially dangerous functions and methods.
Here, we take care of calls that can be found frequently and
in particular within malware. This includes, for example:

• sendTextMessage(): This call is responsible for the
sending of SMS messages

• getPackageInfo(): With the help of this method, mal-
ware often searches for installed AV products

• getSimCountryIso(): This call is used to find out in
which country the user currently resides. This is im-
portant in case of malware to contact the right pre-
mium services

• Ljava/lang/Runtime;->exec(): Executes the speci-
fied command in a separate process. In case of mal-
ware, the commands are often ‘su’ or ‘chmod’

Moreover, we look for calls of the available encryption li-
braries. With this step we try to gain deeper knowledge
of the use of encryption and obfuscation within the appli-
cations. During the code-review we try to recognize the
functions and methods that normally need a permission for
their error-free execution. For this reason we refer to data
of Felt et al. [9] which we translated from Java to smali.
With the help of the gathered list we can now compare if
the app is over- or underprivileged. As an ongoing step, it
is searched for statically coded URL’s with the help of a
regular expression.

We filter all implemented timers and broadcasts the app
is waiting for, as a preparation for the dynamic analysis.
Timers and broadcasts are event triggers for certain code to
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be executed in Android. We analyze these mechanisms to
either trigger the corresponding events or wait for a specified
time period in the ongoing dynamic analysis to improve the
coverage of executed code. By this we assure for example
that the analysis is not stopped before a timer has expired.
This is a common problem in Windows-based dynamic ana-
lysis [25].

At the end of the static analysis a XML file is created,
containing all data generated during the previous steps.

3.2 Dynamic analysis
While certain types of malicious behavior can already be

recognized through static analysis, many kinds of malware
can only be reliably detected by looking at its runtime be-
havior.

3.2.1 Building Blocks
To perform such a dynamic analysis of the app in ques-

tion, we rely on the Android emulator provided by Google
[1]. This software simulates a full ARMv7 device with key
peripherals such as GSM module and touchscreen, thereby
allowing to run unknown apps in a safe environment on a
host computer. As an added benefit, the emulator can be
reset to its previous state after an app has been tested by
simply replacing the system image files with the original
ones. Figure 1 gives an overview of the integration of the
emulator into the entire Mobile-Sandbox framework.

Figure 1: Dynamic Analyzer Component Overview.
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Since the “stock” emulator offers only limited logging ca-
pabilities, we have chosen the well-known TaintDroid/Droid-
Box [7, 16] system as basis for our dynamic analyzer. Taint-

Droid focuses on providing real-time privacy information to
a user on a private device, while DroidBox builds on this
work by logging all data accessed by the app to the system
log, thereby creating a comprehensive picture of the app’s
runtime activities. This includes data read from and written
to files, sent and received over the network, SMS messages
sent, and many more.

While TaintDroid supports Android up to version 2.3.4,
thereby covering at least 75 % of the device market as of
Oct. 2012, DroidBox only supports Android up to version
2.1 which can be considered severely outdated. Therefore,
we updated the DroidBox patchset to work with TaintDroid
2.3.4, including some additional enhancements such as sup-
port for UDP traffic logging.

3.2.2 Tracking Native Code
However, this setup still has a “blind spot”: since both

TaintDroid as well as DroidBox are built on the Dalvik vir-
tual machine used by Android to execute dex bytecode, only
dex bytecode (in general translated from Java bytecode) can
be traced by those tools. Native code executed using the
JNI will not be visible. Since the introduction of the An-
droid NDK, it is easily possible to call native code in ex-
ternal libraries. Although many higher-level functions of
Android are available only in Java, some lower-level func-
tions such as socket(), connect(), read() or write() can
be easily called from the standard C library and could be
used by malware for communication purposes. While the
app would still require the corresponding permissions such
as android.permission.INTERNET for being allowed to open
network sockets, a purely Java-based call tracer would not
be able to detect any communication conducted using native
calls.

Consequently, the dynamic analyzer should have the abil-
ity to trace code included in native shared objects, those
included with the app through the NDK as well as those
shipped with Android. For this purpose, we have included a
modified version of the ltrace [23] command, a common
Linux debugging utility that intercepts library calls of a
monitored application. After the app to be examined has
been started, an ltrace instance is launched and attached
to the Dalvik process running the app in question. All na-
tive calls made into dynamically loaded shared objects are
then logged to a separate file. To reduce the amount of log
data and increase performance, internal functions commonly
introduced by the NDK compiler are excluded from logging.
Such functions are for example _Unwind_Backtrace.

3.2.3 Network Traffic
A third logging component which is already supported

natively by the emulator is capturing of network traffic to a
PCAP file. This common format can later be analyzed using
tools such as WireShark. In summary, our setup produces
three separate log files detailing the app’s behavior (see also
Figure 1):

• DroidBox logfile containing important Java method
calls and data from the Dalvik VM;

• ltrace logfile containing native method calls in shared
objects using JNI;

• network PCAP file containing all data sent over the
simulated 3G network.
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3.2.4 User Interaction
Another issue which has to be considered for dynamic

analysis is that of code coverage. For most types of malware,
simply launching the app will not trigger any malicious pay-
load - it is necessary for the user to interact with the app
and perhaps even confirm some malicious actions.

In order to test a significant fraction of the code paths
present in the examined app, we use the MonkeyRunner
toolkit provided by the Android SDK. Using this utility, it is
possible to automatically send simulated interaction events,
such as touchscreen contacts or key presses, to the tested
app. Since MonkeyRunner does not take any UI elements
into account, but rather produces random events, a sufficient
number of events should be generated to make sure that
most interaction elements have been triggered at least once.

In addition to MonkeyRunner, we also use functionality
built into the emulator to simulate external events such as
incoming phone calls or SMS messages. These events are
sometimes also used by malware to trigger malicious behav-
ior.

3.2.5 Summary
In summary, the following steps are executed in order to

analyze the runtime behavior of an app:

1. Reset emulator to the initial state.

2. Launch emulator and wait until startup is completed.

3. Install app to be analyzed using adb.

4. Launch app in a new Dalvik VM.

5. Attach ltrace to the VM process running the app.

6. Launch MonkeyRunner to generate simulated UI events.

7. Simulate additional user events like phone calls.

8. Launch a second run of MonkeyRunner.

9. Collect the Dalvik and ltrace log and the PCAP file.

The resulting log files of this process are inserted in our
database. This database can be used to perform multiple
other analyses.

3.3 Examples
To demonstrate the full range of functions of Mobile-Sandbox

and the format of the log files, we now show some results
of the log files that resulted from some applications we an-
alyzed. We start with some information from our dynamic
analysis which can be very useful when looking at encrypted
data inside the application. In this case, the application has
encrypted IMEI and IMSI numbers with the help of the DES
algorithm before sending these data to a remote server. If
you take a look at the network traffic, you would only see
a package with encrypted data, but looking in the results
from Mobile-Sandbox you get the decrypted data and the
DES key that was used for encryption (see Listing 1).

Data −− 357242043237517 |310005123456789
Algorithm used −− DES
Key −− 77 ,19 ,68 ,124 ,24 ,90 ,10 ,19 ,65 ,16 ,71 ,23

Listing 1: Decrypted IMEI and IMSI and used en-
cryption key.

While executing the applications inside the emulator we
monitored several outgoing SMS messages (see Listing 2 for
two examples).

Number : 84242 −− Message : QUIZ
Number : 7132 −− Message : 844858

Listing 2: Two examples for outgoing SMS mes-
sages.

In addition we found several kinds of data leakage. In List-
ing 3 we displayed the content of a file that was generated
by the application.

F i l e : /mnt/ sdcard /Tencent/v1 . l og
Operation : wr i t e
Data : Dev ice In fo [ imei =357242043237517 ,

telNum=, phModel=gener i c ,
sysSdk =10, RELEASE=2 .3 . 4 ]

Listing 3: Data leakage to a file located on the un-
protected SDcard.

Within our network traffic analysis we found a lot of pri-
vacy related data like IMSI, IMEI or smartphone model,
which was uploaded to remote servers or web services. One
example for such an information leakage via HTTP POST
can be seen in Listing 4.

<?xml ve r s i on =”1.0” encoding=”utf −8”?>
<request>

<vers ion >1.15</ vers ion>
<platform>2</platform>
<plat formVers ion >2.3</ plat formVers ion>
<IMEI>357242043237517</IMEI>
<simID>89014103211118510720</simID>

</request>

Listing 4: Information leakage found inside recorded
network traffic.

4. EVALUATION
We now present an evaluation of our sandbox system. We

analyzed the following aspects: correctness, performance,
detectability and scalability. At the end of this section we
also present a short case study of a malicious app using
native calls.

4.1 Correctness
By correctness we mean that an entry in the mobile-

sandbox log file only appears if and only if the correspond-
ing action was performed by the analyzed app. To check
correctness, we chose 20 samples from a set of malicious ap-
plications that we collected from different sources. These
samples represent different families of Android malware as
shown in Table 1, meant to assure a wide coverage of mali-
cious actions and different points in the development states
of malware evolution. More specifically, we chose samples
that hit the markets from mid 2010 until beginning of 2012.
The LeNa and RootSmart families use exploits and native
calls, FakeInst and Adsms send premium SMS messages.
The Moghava family acts only on the smartphone itself and
modifies locally stored pictures, i.e., there is no malicious ac-
tion observable that“leaves”the smartphone. The TapSnake
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Malware Number of Primary
Family Samples Usage
Adsms 2 S
BaseBrid 5 I, B
SerBG 2 R, I, B
RootSmart 1 R, I, B, A
LeNa 1 R, I, B, A
Moghava 1 C
FakeInst 7 S
TapSnake 1 L

Table 1: Overview of Mobile Malware used for Eval-
uation (R = gains root acces, C = compromises local
storage, S = sends SMS messages, I = steals privacy
related information, B = botnet characteristics, L =
steals location data, A = installs additional apps).

family sends location information from the smartphone to a
remote server.

Within this sample set, we consider RootSmart to be the
most sophisticated malware sample which is, amongst other
capabilities, also able to exploit the Android OS while Tap-
snake is the simplest sample when looking at the techniques
used for malicious behavior.

We manually inspected samples from all these families and
consulted all available analysis reports by anti-virus compa-
nies and from other sources on the Internet. The result-
ing action sequences yielded the ground truth to which we
compared the behavior the was output by Mobile-Sandbox.
Overall, Mobile-Sandbox only detected actions that were
part of the ground truth. However, after initial analysis
we failed to see certain behaviors that were described in the
analysis reports on the Web. Later we realized that the
missing behaviors were due to missing external stimuli, i.e.,
remote servers of a botnet not being active anymore. These
insights gave us additional confidence that Mobile-Sandbox
is working correctly.

4.2 Performance
The performance of some parts of our system is still rather

weak. During the evaluation for this paper we measured
runtimes between 9 and 14 minutes for the analysis of one
single application. The system is running on an Ubuntu
server with Intel Xeon 2,4GHz CPU and 48 GB of RAM.

In average Mobile-Sandbox finishes the virus check within
3 seconds and the subsequent static analysis within addi-
tional 8 to 15 seconds. Afterwards the system needs about
2 minutes to reset and reboot a clean version of the emula-
tor. After successfully booting the emulator it takes another
2 to 6 minutes to install the application. This step depends
on the file size of the application. The execution of the ap-
plication and the MonkeyRunner scripts lasts another 6-10
minutes depending on the amount of user events and timers
we want to trigger. After shutting down the emulator the
system needs additional 10 seconds for analysis of all log files
and network traffic.

The performance can be enhanced tremendously by run-
ning multiple instances of the analysis frameworks simulta-
neously.

4.3 Detectability
As we know from malware targeting the Windows en-

vironment, there are mechanisms to detect virtualized or
sandboxed environments to make the analysis process of the

Build Information Emulator Galaxy S2
Build.BOARD unknown smdk4210
Build.DEVICE generic GT–I9100
Build.MODEL sdk GT–I9100
Build.PRODUCT sdk GT–I9100
Build.TAGS test–keys release–keys
ro.kernel.qemu 1 0
ro.hardware goldfish smdk4210

Table 2: Differences in build information between
the emulator and a Samsung Galaxy S2.

malicious application more difficult or to act differently in
these environments. Even if this behavior is not prevalent
with Android at the moment, we think that this will change
in the future. So, an important security aspect is the de-
tectability of our analysis platform.

A mechanism to detect the Android emulator deals with
the specific builds of the operating systems that are used
for it. An application querying this information can easily
detect if it is running inside an emulator or on a real de-
vice. Table 2 shows some system values that can be used
for identification as they are sufficiently different from real
smartphones. To prevent this detection mechanism a cus-
tom build of the Android system is required. In this build
we changed the first five variables from Table 2 to the values
of a real Samsung Galaxy S2. Unfortunately, modifying the
last two values can cause system crashes while running the
emulator because there are some Android system services
that rely on the fact that these values are set correctly. An-
other problem hiding the emulator is the fact, that Android
launches the qemud and qemu-props daemons that offer em-
ulation assistance to Qemu when running inside the emula-
tor. Removing these two daemons is not feasible as they are
needed to emulate the radio equipment.

Another weak point is Qemu itself. As emulated hardware
always behaves differently to native hardware an application
is able to detect if it is running inside an emulator by observ-
ing the behavior of certain performance aspects of the CPU.
Raffetseder et al. [19] show multiple ways to detect the x86
version of Qemu. Similar techniques could also be applied
to the ARM architecture to detect the corresponding Qemu
version.

Additionally, we changed the default IMSI and IMEI of
the emulator (originally both “0”) to random values that are
consistent with regular IMEI and IMSI numbers. We did
this modification to avoid emulator detection mechanisms
that check for non-standard or empty values in these device
identifiers. We have seen this detection technique employed
in various samples, but we are not aware of any other detec-
tion mechanisms used in other samples yet.

4.4 Scalability
Our last evaluation criterion refers to the scalability of

Mobile-Sandbox, i.e., the question whether it can be used in
large-scale analysis projects with several hundreds or thou-
sands of apps.

4.4.1 Malware in Third-Party Apps
To evaluate the scalability aspect, we collected about 80,000

apps between December 2011 and August 2012 from the
most important Asian markets by downloading them using
the Android emulator in an automated fashion. We call this
set of apps the “Asian set”. We also received about 7,500

1813



Android malware samples from different families through
anonymous uploads to our webservice [4] and through the
VirusTotal Malware Intelligence Services (VTMIS) [14]. We
call this set of samples the “malware set”.

We then used Mobile-Sandbox to automatically analyze
36,000 randomly chosen apps from the Asian set and 4,000
randomly chosen samples from the malware set. The analy-
sis results were stored in a database on which we performed
statistical analysis. These analyses were performed using a
single installation of Mobile-Sandbox within a time span of
14 days.

Figure 2: Top 5 Detected Malware Families and
Number of Corresponding Samples in the Union of
Asian and Malware Set.

0

200

500

900

FakeInst

O
pfake

K
ungFu

P
langton

B
aseB

rid

N
um

be
r o

f S
am

pl
es

 p
er

 F
am

ily

Besides exhibiting that the use of Mobile-Sandbox can
scale to several thousand apps, the statistical analysis pro-
vides some very interesting results. Considering the union
of the Asian set and the malware set, we found 4,641 mali-
cious samples according to the VirusTotal API. Due to the
fact, that the malware set consisted of only 4,000 samples,
there had to be at least 641 samples from the Asian set that
were classified as malicious by VirusTotal. From these 641
samples, 213 samples belong to FakeInst, 185 samples are
infected with Opfake, 177 samples are infected with Plank-
ton, 64 samples belong to KungFu and 2 samples belong to
the Jifake malware family.

Taking a deeper look at the distribution of the malicious
applications we noticed that about 54 percent of the 4,641
samples belong to only four malware families (see Figure 2
for a comprehensive overview). These families are FakeInst,
Opfake, KungFu and Plangton. Their main functionality is
sending premium SMS messages and, in the case of KungFu,
another main functionality is information stealing.

4.4.2 Native Calls
Another point of interest is the use of native interface

calls inside Android applications. According to our analysis
about 24 percent of the samples from the Asian set use native
API calls. When one considers that the author of an app can
potentially “hide” many malicious actions inside the native
part of the application and that common tools are not able
to trace or log this part of the application, the share of one

out of four shows why it is so important to develop a system
which is able to log these events. Figure 3 also depicts the
share of native calling apps in the malware set. Interestingly,
this share is about 13 percent. This means that the existence
of native calls does not necessarily imply a higher probability
that the app is malicious.

Figure 3: Share of Samples Using JNI.
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Within the Asian set samples that use native code, we
found five samples that were hiding their malicious actions
inside the native part of their code. When uploading these
samples to VirusTotal we got a detection rate of 0%. This
again makes clear how important it is to monitor and analyze
native code.

4.4.3 Statistical Implications
In summary, we found 1.78% (641 out of 36,000) samples

from the Asian set to be malicious. Recall that 5 out of these
641 were not detected by VirusTotal. But how representa-
tive are the results from our measurements? Since we have
a rather large measurement base (number of measurements)
and we have taken a random sample, we can apply quality
assurance techniques from surveys performed in the area of
social sciences by Groves [12, 13].

In general, there are two quality criteria for statistical
value estimations. The first is the probability of error, i.e.,
the probability that a statement is not true. In empirical
research, the probability of error is acceptable if it is below
5%. The second criterion is the margin of error, meaning
the margin of percentages that the measurement could be
different. Acceptable values are 5% or below. Measuring a
value of 75% with 5% error probability and 5% error margin,
for example, means that with 95% probability, the “real”
value is between 70 and 80%.

Following Groves [12, 13], it is sufficient to analyze at least
664 samples to guarantee 1% error probability and 5% error
margin. The measurements given above about the use of
native code calls in the Asian set can therefore be generalized
with high probability. The percentages of malware within
the entire Asian set (1.78%) is so small that a 5% error
margin is too large to generalize this value. To reach below
a 1% error margin we would need to analyze almost 100,000
samples [12, 13] so we cannot generalize our findings in this
aspect.
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5. CONCLUSIONS
In this paper, we proposed Mobile-Sandbox, a static and

dynamic analyzer for Android applications with the purpose
to support malware analysts to detect malicious behavior.
In the static analysis we parse the application’s Manifest file
and decompile the application. In a further step we deter-
mine if the application is using suspicious looking permis-
sions or intents. The second part of our sandbox performs
the dynamic analysis where we execute the application in
order to log all performed actions including those stemming
from native API calls.

There are still many points to improve Mobile-Sandbox,
especially regarding the performance. For a better perfor-
mance and thus, for analyzing more samples in an appropri-
ate time period, an idea would be to parallelize the analysis
process and try to fix the crashes of MonkeyRunner. These
improvements will probably also lead to a more reliable sys-
tem. As an additional future work, we want to implement a
malware detection system which is no longer based on anti-
virus systems: The idea is to use our results from Section 4
and combine them with machine learning techniques based
on our 1TB sample set. With the help of these techniques,
we hope to find new heuristics and patterns for efficient mal-
ware detection and clustering.

For all the mobile users we will provide an application
for the Android platform which is able to check the status
of already installed applications and is able to upload them
directly into our sandbox for analysis if no report is available.
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