
SecuriCast: Zero-Touch Two-Factor Authentication
using WebBluetooth

Thomas Dressel
Institut für Informationssysteme

Hof, Germany
thomas.dressel@iisys.de

Eik List and Florian Echtler
Bauhaus-Universität Weimar

Weimar, Germany
firstname.lastname@uni-weimar.de

ABSTRACT
Simple username/password logins are widely used on the
web, but are susceptible to multiple security issues, such as
database leaks, phishing, and password re-use. Two-factor
authentication is one way to mitigate these issues, but suffers
from low user acceptance due to (perceived) additional effort.

We introduce SecuriCast, a method to provide two-factor
authentication using WebBluetooth as a secondary channel
between an unmodified web browser and the user’s smart-
phone. Depending on the usage scenario and the desired level
of security, no device switch and only minimal additional
interaction is required from the user. We analyse SecuriCast
based on the framework by Bonneau et al., briefly report on
results from a user study with 30 participants demonstrat-
ing performance and perceived usability of SecuriCast, and
discuss possible attack scenarios and extensions.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing systems and tools;

KEYWORDS
WebBluetooth; Bluetooth Low Energy; BTLE; two-factor au-
thentication; TFA; smartphone; smartwatch

1 INTRODUCTION & RELATEDWORK
Access to today’s ubiquitous web services is mostly con-
trolled by a single authentication factor, usually in the form
of a username/password combination. Given that a single

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EICS ’19, June 18–21, 2019, Valencia, Spain
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-6745-5/19/06. . . $15.00
https://doi.org/10.1145/3319499.3328225

Figure 1: Using SecuriCast in notify mode to confirm two-
factor authentication via a smartwatch.

person can easily have dozens of different web-service ac-
counts, average users are often overwhelmed by the complex-
ity of managing these accounts. Consequently, they usually
try to reduce the required effort, e.g. by recycling the same
password for multiple services. In fact, about 55% of users
confirm to re-use at least one of their passwords [6].

While understandable, this behavior opens up several se-
curity risks. Account databases are regularly hacked and
leaked online. For example, the recent Collection#1 breach
contained around 2.7 billion records [13]. Low-complexity
passwords or those stored in databases with insufficient pro-
tection can easily be brute-forced by adversaries, and re-used
credentials then open the gates for abuse. Phishing attacks
via spam mails are also widely used to collect account data
from unsuspecting users, leading to similar issues.

Two-factor authentication (TFA) is one approach to counter
these issues. In addition to regular username/password com-
bination, a second authentication factor shall verify that the
person trying to authenticate at the service is indeed the
legitimate user. TFA generally tries to verify a physical quan-
tity that can not easily be stolen or leaked online. It can use
biometric measures as the second factor, but a more common
approach is to verify possession of a physical token. The
latter approach is prevalent today, as many people already
carry a suitable, almost omnipresent token – namely, their
smartphone. A dedicated app generates one-time passwords
that the user has to enter within a short time window after
the regular login process, thereby verifying that, indeed, the

https://doi.org/10.1145/3319499.3328225

EICS ’19, June 18–21, 2019, Valencia, Spain Thomas Dressel and Eik List and Florian Echtler

same person has access to a) the account credentials, and b)
the smartphone. Unfortunately, only few people seem pre-
pared to shoulder the added effort for TFA, however small
it may be. For example, in 2015, it was estimated that about
6.5% of Google accounts use TFA [19], and it is unlikely that
this number has significantly increased since then.

We introduce SecuriCast, a TFA method that requires min-
imal user interaction beyond the normal login and automati-
cally verifies the second factor via a parallel communications
channel (WebBluetooth) between the browser and the user’s
smartphone. In particular, our approach does not require the
user to switch devices during the login process. If desired, an
additional level of security against co-located attackers can
be introduced by requiring the user to verify a set of four
keywords before the second factor is delivered. SecuriCast
does not require installation of dedicated software or plugins
in the browser, and can consequently be used in any envi-
ronment such as an Internet café. Related Work In general,
two-factor authentication was first established as a means
to secure banking transactions. It received broader attention
when Google [10], and other major Internet companies such
as Apple or Facebook developed variants [2, 22]. Various
research projects already have attempted to simplify the TFA
process to foster adoption.
Scanning Visual Codes Quick-Response (QR) codes easen

the transmission of challenges and responses between brow-
ser and smartphone. As two good examples, Dodson et al.
proposed Snap2Pass [8] and van Rijswijk and van Dijk pro-
posed Tiqr [24]. Their approach avoids sending data, which
protects against nearby adversaries, and saves battery. How-
ever, the user must still start the app, focus, and scan the QR
code, which becomes a dull task in the long run.

Typing PINs The Google Authenticator (GA) app is repre-
sentative for a wide range of existing one-time-password-
based TFA protocols (further examples include, e.g., [1, 11]).
All such apps require an initial setup step to exchange a
cryptographic secret between the web service and the user’s
smartphone which is then used to generate the one-time
passwords, usually via scanning a QR code. Later during
login, the user has to start the GA app on their device and
type the generated six-digit pin in a browser dialog, which is
a small, but – in the long run, across web services – tedious
process. Moreover, while phishing is an immanent risk to var-
ious protocols, OTP-based protocols open another potential
attack angle: after obtaining the first factor, attackers “phish”
the second one by simply asking their victims to forward
the received SMS code [16]. This social risk is mitigated for
WiFi-based solutions where no obvious notification occurs.

In 2016, Google [14] added push notifications for com-
patible smartphones to enhance user-friendliness; a similar
approach had been introduced before in Duo Push [9]. After
registration, a push notification with IP, homepage, and time

is sent to the device on each login event, which can be ei-
ther approved or denied by the user, both with one tap. The
approach advances usability, but needs Internet or cellular
access for the phone.

Interaction-free TFA Mechanisms. PhoneAuth [7], Knock x
Knock [12], and Sound-Proof [15] are phone-based challenge-
response mechanisms that try to avoid user interaction for
the second factor. PhoneAuth needs a modified version of
the GA plus a Chrome browser with a custom extension. The
protocol offers a strict mode that enforces a cryptographi-
cally secure second factor, and an opportunistic mode that
uses the second factor only if possible, but omits it otherwise
and provides feedback to the user about login attempts. The
opportunistic fallback to one factor is a clear drawback, and
demands knowledgeable users.
Knock x Knock already uses Bluetooth Low Energy to

transmit challenges. However, this approach requires both
an application and a browser plugin on the localmachine, and
is consequently only suited for personally owned computers.
Sound-Proof compares the ambient sound of the user’s

environment on the computer with the browser and the
smartphone for authentication. The approach clearly ben-
efits the usability; however, recording environment sound
introduces privacy risks. Moreover, this approach cannot
protect against man-in-the-middle, phishing, or co-located
adversaries; plus, it is difficult to deploy at scale.

Other ApproachesManymore smartphone-based TFA schemes
exist in the literature. Some concern transaction via un-
trusted browsers, e.g., PhoolProof by Parno et al. [20], Starn-
berger et al.’s QR-TAN [23], or Mannan and van Oorschot’s
MP-Auth [18]. Others include full protocol suites, such as that
by Shirvanian et al. [21]; their variants with low interaction
employ Bluetooth or WiFi, but require an extended version
of the browser. Despite this large body of work, we are un-
aware of any two-factor protocols that enable authentication
with little additional interaction in arbitrary environments
(non-modifiable browser, lack of Internet connectivity, etc.).
It is this gap that SecuriCast aims to address.

2 THREAT MODEL
The primary threat that SecuriCast is designed to defend
against is password leakage. Thus, we assume that an ad-
versary can obtain the user’s login and plaintext password,
either through a phishing scheme, a database leak, or a key
logger. We optionally also consider the strong assumption
that an adversary could identify the user personally and be
in sufficient physical proximity so that Bluetooth communi-
cation can be passively observed, or even actively generated.
We currently do not address scenarios wherein the adversary
knows the user’s credentials and simultaneously has full con-
trol over the user’s smartphone (either through theft while
unlocked, or via malware). Regarding the environment, we

SecuriCast: Zero-Touch Two-Factor Authentication using WebBluetooth EICS ’19, June 18–21, 2019, Valencia, Spain

Figure 2: Sequence diagram of the TFA process with notification. Note that for zero-touchmode, the user interaction contained
in the dashed green box is omitted and the second factor is immediately sent to the browser.

do not assume that the user is able to modify the computer
they use (e.g. by installing browser plugins), and only assume
that a recent version of the Chrome browser is used. We also
consider the potential for a Denial-of-Service (DoS) attack
in which the attacker disrupts Bluetooth communication.

3 SECURICAST IMPLEMENTATION
SecuriCast consists of three main components: the service
provider who wants to authenticate the user, a browser with
WebBluetooth support (Chrome 53+) for the login process,
and the user’s smartphone with the SecuriCast app that
provides the second factor. We have implemented SecuriCast
based on the open-source Google Authenticator framework
[26]. Our implementation includes an app for Android 6.0+
with QR-code support for the setup, a login frontend for the
browser with WebBluetooth support written in JavaScript,
and an authentication backend based on Java servlets. Source
code is available at https://github.com/mmbuw/securicast.
To use SecuriCast, the user first has to complete a one-

time setup process to register their individual app instance
with the service provider.We assume that this initial one-time
setup process is conducted in a secure environment where
the QR codes with symmetric encryption keys can be read
only by the user. The setup has to be completed once for
each service provider identified by a unique identifier sid that
concatenates its target domain name and username. All com-
munication between the browser and the service provider
is encrypted using the industry-standard TLS protocol v1.3.

For the service provider, the server-side integration effort is
the same as for the existing GA.
After the setup, SecuriCast can be used in any environ-

ment that provides aWebBluetooth-supporting browser. This
includes personal computers, but also “borrowed” machines,
e.g., in an Internet café. As Bluetooth Low Energy and, thus,
WebBluetooth lack encryption by default for standard con-
nections in the GATT protocol, a symmetric key kwbt is ex-
changed during the setup process, and is used to encrypt the
communication between the browser and the smartphone
during authentication. SecuriCast uses AES-256-GCM with
standard random 96-bit nonce and 128-bit tag sizes to pre-
vent sniffing attacks. The second factor uses a custom BTLE
service ID, that is also used by the browser to show only
those devices for connection that offer this specific service.

SecuriCast supports two modes: a “zero-touch” mode that
avoids any device switch or additional interaction from the
user except initiating the WebBluetooth connection, and a
“notify” mode wherein the user can compare four keywords
to verify the authentication attempt (see Figure 2 for a de-
tailed sequence diagram). As SecuriCast is based on the GA,
the second factor is also displayed in the app as a six-digit
PIN that can be entered manually as a fallback option, e.g., if
no Bluetooth module is available or if a co-located attacker
disrupts wireless communications. As with any TFA solution
that uses a separate device, a loss of power on this device or
a loss of it will prevent the user from authenticating. Miti-
gating this issue is beyond the scope of our work.

https://github.com/mmbuw/securicast

EICS ’19, June 18–21, 2019, Valencia, Spain Thomas Dressel and Eik List and Florian Echtler

The two modes of SecuriCast support two levels of se-
curity, with a corresponding usability trade-off. The zero-
touch mode requires no device switch and only three addi-
tional clicks (1. start Bluetooth discovery, 2. select a target
device, and 3. initiate the connection), but cannot fully pro-
tect against a co-located adversary with prior knowledge of
the user. In this specific targeted attack scenario, the adver-
sary already has gained access to the first factor, e.g. through
a phishing email or a database leak. If the adversary can then
a) personally identify the targeted user and b) be in physical
proximity to this user, they could login with the stolen first
factor, and also remotely employ the user’s SecuriCast app as
second factor without the user’s knowledge, as the browser
does not have to identify itself to the smartphone.
If users also want protection against such advanced at-

tacks, they can utilize the notify mode. Here, the smartphone
(or connected smartwatch) shows a notification when the
second factor is requested. The notification consists of four
pictureable words (e.g. “cat” or “house” that can be associated
with images and are therefore easier to remember than ran-
dom words) which are also displayed in the browser while
the login process waits for the second factor. We select 4
words from a pool of 1000 to avoid overloading the users’
short-term memory while still providing reasonable security
against guessing attacks with 1012 possible combinations. If
the words match, the user can confirm the notification with
a single tap (see also Figure 1) to continue. Otherwise, they
can deny the login attempt, also with one tap.

Even if the adversary also installs the SecuriCast app, they
will still lack the private key and thus cannot generate cor-
rect one-time passwords. On the other hand, if an adversary
solely gains access to the user’s smartphone, e.g. by theft,
they will be unable to use SecuriCast without also having
access to the first login factor (i.e., username and password).

4 USER STUDY
We have evaluated the usability of SecuriCast in a lab-based
user study. Our study was conducted with 30 volunteer par-
ticipants recruited from employees and students of our local
university who did not receive any compensation for their
participation. They had a mean age of 25.4 years (six fe-
male, 24 male) and 28 had a background in computer science.
After completing a consent form and demographic ques-
tionnaire, the users were briefed about TFA and the general
study content. Then, they had to complete three login tasks
(counterbalanced by latin-square order) on a laptop with a
second authentication factor: using Google Authenticator,
SecuriCast (zero-touch), and SecuriCast (notify). First, the
users had to complete a regular website login with a given
username and password (identical for all tasks, provided on
the instruction sheet). Next, they had to provide the second
authentication factor, either by triggering the SecuriCast

authentication or by entering the six-digit PIN from Google
Authenticator. For SecuriCast, the users had to select and
confirm the smartphone connection in a pop-up; in notify
mode, they further had to compare and confirm the four
picturable words shown on the login page and on the smart-
phone (see also Figure 1). The study concluded with a short
semi-structured interview. All tests were conducted on a lap-
top with an unlocked Moto E (2nd gen.) smartphone placed
besides the keyboard.

After each task, the participants were asked to complete an
SUS questionnaire [4]. A Kolmogorov-Smirnov test showed
that the data is not normally distributed. While a subsequent
Friedman test showed no significant differences between the
modes (p = 0.228, z = 2.960, r = 0.54), descriptively, both
SecuriCast modes received higher ratings (median 87.5) than
Google Authenticator (median 82.5). In the post-task inter-
view, participants were asked which mode they prefer, and
why. 15 users preferred SecuriCast (zero-touch), nine Securi-
Cast (notify), and six Google Authenticator. The informal
feedback suggests that a) users felt positive about the usabil-
ity of SecuriCast when compared to GA, b) it is important to
leave users a choice of the mode depending on the situation,
and c) a hybrid mode that shows a plain notification without
keyword comparison could further increase adoption.
As the first factor was identical for all iterations of our

study, we disregarded the time for entering the standard cre-
dentials. We logged the time after the first factor had been
completed, and after the second factor had been received. In
this time, users had to a) read and enter a PIN code (GA), or b)
select the smartphone from the Bluetooth device list (Securi-
Cast zero-touch), or c) select the smartphone and compare
the four words in the notification (SecuriCast notify).
We observed that SecuriCast (zero-touch) offers slightly

better performance (x̄ = 15.46s, SD = 6.60) than Google
Authenticator (x̄ = 18.52s, SD = 8.44), although not on a
statistically significant level. The small difference is likely
due to the additional interaction currently needed for set-
ting up the Bluetooth connection, which may disappear in
future versions of WebBluetooth. Moreover, participants
tended to re-check the instruction sheet more often for Se-
curiCast, which may explain an additional small delay. Us-
ing SecuriCast (notify) takes longer than both other modes
(p < 0.001, x̄ = 25.85s, SD = 14.33), however, this difference
is likely due to the relatively unfamiliar process of comparing
four keywords and would decrease with practice.

5 THEORETICAL ANALYSIS
We analyze SecuriCast in the framework for web-authentica-
tion methods by Bonneau et al. [3]. It introduces 25 features
grouped into Usability, Deployability, and Security. For each
feature, a scheme can receive up to two points, which yields a
hypothetical maximum of 50 points. For the existing systems

SecuriCast: Zero-Touch Two-Factor Authentication using WebBluetooth EICS ’19, June 18–21, 2019, Valencia, Spain

Scheme Usability Deployability Security Total

M
em

or
yw

is
e-
Eff

or
tle

ss
Sc
al
ab
le
-fo

r-
U
se
rs

N
ot
hi
ng

-to
-C
ar
ry

Ph
ys
ic
al
ly
-E
ffo

rt
le
ss

Ea
sy
-t
o-
Le
ar
n

Effi
ci
en
t-
to
-U
se

In
fr
eq
ue
nt
-E
rr
or
s

Ea
sy
-R
ec
ov
er
y-
fr
om

-L
os
s

A
cc
es
si
bl
e

N
eg
lig

ib
le
-C
os
t-p

er
-U
se
r

Se
rv
er
-C
om

pa
tib

le
Br
ow

se
r-
Co

m
pa
tib

le
M
at
ur
e

N
on

-P
ro
pr
ie
ta
ry

R.
-t.
-P
hy

si
ca
l-O

bs
er
va
tio

n
R.
-t.
-T
ar
ge
te
d-
Im

pe
rs
on

at
io
n

R.
-t.
-T
hr
ot
tle

d-
G
ue
ss
in
g

R.
-t.
-U
nt
hr
ot
tle

d-
G
ue
ss
in
g

R.
-t.
-In

te
rn
al
-O

bs
er
va
tio

n
R.
-t.
-L
ea
ks
-fr

om
-O

th
er
-V
er
ifi
er
s

R.
-t.
-P
hi
sh
in
g

R.
-t.
-T
he
ft

N
o-
Tr
us
te
d-
Th

ird
-P
ar
ty

Re
qu

iri
ng

-E
xp

lic
it-
Co

ns
en
t

U
nl
in
ka
bl
e

#• #◦ Sc
or
e

Google Authenticator [3] - - ◦ - • ◦ ◦ ◦ ◦ - - • • - ◦ ◦ • • - • • • • • • 11 7 29
YubiKey [17] - - - - • ◦ ◦ - • - - • • - • • • • • • - • - • • 13 2 28
PhoneAuth (strict) [7] - - ◦ - • • ◦ ◦ • ◦ - - - • • • • • ◦ • • • • • ◦ 13 6 32
PhoneAuth (opportunistic) [7] - - ◦ - • • ◦ ◦ • • - • - • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ 9 10 28
Sound-Proof [15] - - ◦ - • • ◦ ◦ • • - • - • ◦ - • • - • • • • • - 13 4 30

SecuriCast (zero-touch) - - ◦ - • • ◦ ◦ • • - • - • • - • • ◦ • ◦ • • • • 14 5 33
SecuriCast (notify) - - ◦ - • ◦ ◦ ◦ ◦ • - • - • • • • • ◦ • ◦ • • • • 13 7 33

Table 1: Comparison of TFA methods in the framework by Bonneau et al.; each column represents a feature that
can be rated as given (•, 2 pt.), quasi-given (◦, 1 pt.), or as absent (-). Ratings from [7] (with shaded background)
have been adjusted downwards from their original source to be consistent with [3,15,17]. R.-t. = Resilient-to.

(YubiKey, GA, SoundProof, and PhoneAuth), we took their
self-assigned ratings from the respective publications (see
Table 1). For the feature Scalable-for-Users, we have adjusted
the existing ratings to zero to all schemes, as users are still
required to remember individual credentials for each service;
none of the present schemes scales to hundreds of services
– as has also been discussed by Bonneau et al.; similarly, all
discussed schemes need at least minor modifications to the
backend, and can therefore not be rated as Server-Compatible.
For detailed descriptions of the features and criteria for grad-
ings, we refer to [3]. Hereupon, we focus on the aspects
where we have rated SecuriCast differently than GA.

Efficient-to-Use. As the user has to neither switch to a
different device, nor to type TOTP numbers, SecuriCast (zero-
touch) is more efficient to use than GA. Since SecuriCast
(notify) still requires at least an attention switch to the device,
we rate it approximately equivalent to GA here.

Accessible. We rated SecuriCast (zero-touch) as fully Ac-
cessible, as it does not add interaction modalities. Users who
can interact with the browser can also use SecuriCast (zero-
touch), regardless of physical limitations; GA and SecuriCast
(notify), however, need a switch to another device.

Mature. Since neither SecuriCast nor PhoneAuth or Sound-
Proof have been used in large-scale deployments, they have
not been rated as Mature, in contrast to GA and YubiKey.

Non-Proprietary. GA is considered proprietary, as only an
older version is available as open-source. The other schemes
could be re-implemented based on their publications (except
for YubiKey); SecuriCast is fully open-source.

Resilient-to-Physical-Observation. Shoulder-surfing can re-
veal the user’s PIN in the case of GA. With SecuriCast, how-
ever, the password is never visible to the adversary.

Resilient-to-Targeted-Impersonation. For SecuriCast (zero-
touch), a co-located attacker could surreptitiously access the
user’s smartphone with their own browser and thereby gain
access to the second authentication factor. However, Securi-
Cast (notify) is able to defend against all types of co-located
attacks, and is therefore rated as being fully resilient.

Resilient-to-Internal-Observation. Adversaries that are able
to capture the user’s keyboard input can gain access to a
service using GA if the second factor is used in a short time
frame. Since both SecuriCast modes avoid keyboard input
for the second authentication factor, they resist such attacks.

Resilient-to-Phishing. Both SecuriCast modes can only par-
tially resist sophisticated phishing attacks. If an adversary
gained control over the channel between the user’s browser
and the service provider (including TLS), they could intercept
one-time passwords to authenticate in a parallel session.

Both SecuriCast modes arrive at a final rating of 33 points.
The ratings reflect the slightly higher usability and deploy-
ability for the zero-touch, and higher security (particularly
against co-located adversaries) for the notify mode. Their dif-
ferent interactions cannot be represented in this framework
currently, as both modes need at least some user interaction
(i.e., for the first factor). Both methods are on par or better
to widely used commercial offerings, and can therefore be
considered suitable for usage in real-world environments.

6 DISCUSSION & FUTUREWORK
One limitation of our approach is that WebBluetooth cur-
rently prohibits connections without user interaction. This
requirement from the current standard draft is designed to
prevent unauthorized websites from trying to connect to de-
vices without user consent [27]. Since WebBluetooth is still

EICS ’19, June 18–21, 2019, Valencia, Spain Thomas Dressel and Eik List and Florian Echtler

under development, future versions may allow unsupervised
connections from trusted websites to known devices.

WhileWebBluetooth is currently supported only byGoogle
Chrome 53+, its market share and auto-update feature pro-
vide a broad support base. Moreover, WebBluetooth is to
become a W3C standard and is likely to be integrated into all
major browsers. As a future alternative, the recently finished
WebAuthentication standard [25] also allows for BTLE as a
transport protocol. As both follow a similar control flow, it
should be easily possible to adapt SecuriCast to the standard.

Many devices use their model designation as default Blue-
tooth name. If SecuriCast should gain wider adoption, choos-
ing the correct device might become a source of errors. This
can be partly mitigated when users select unique device
names, but cannot fully prevent misconnections. As all Blue-
tooth communication is encryptedwith AES-256-GCMunder
a secret key, connecting to the wrong smartphone would
not compromise security, as the transmitted data from an
erroneously selected device could not be decrypted properly.
The user feedback suggested a third, hybrid, mode that

only requests a user confirmation before authentication, but
avoids the keyword comparison. This would assuage users
who felt insecure with the zero-touchmode, while still saving
them time. This mode would also fit well in a smartwatch-
based scenario, where a quick confirmation can be issued
directly from the watch. Finally, we plan to conduct an addi-
tional study that will focus on participants with less security
experience and examine their mental models of the TFA pro-
cess, similar to the study in [5]. In parallel, a longer-term
study in an everyday context could yield further insights.

REFERENCES
[1] Fadi A. Aloul, Syed Zahidi, and Wassim El-Hajj. [n. d.]. Two Factor

Authentication Using Mobile Phones. In AICCSA’09, E. M. Aboulhamid
and J. L. Sevillano (Eds.). IEEE Computer Society, 641–644.

[2] Apple. 2016. Two-factor authentication for Apple ID. https://support.
apple.com/en-us/HT204915 [last accessed 2018-02-09].

[3] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank
Stajano. 2012. The Quest to Replace Passwords: A Framework for Com-
parative Evaluation of Web Authentication Schemes. Technical Report
UCAM-CL-TR-817. University of Cambridge. http://www.cl.cam.ac.
uk/techreports/UCAM-CL-TR-817.pdf [last accessed 2018-02-09].

[4] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability
evaluation in industry 189, 194 (1996), 4–7.

[5] Sonia Chiasson, P. C. van Oorschot, and Robert Biddle. 2006. A Us-
ability Study and Critique of Two Password Managers. In USENIX SS
(USENIX-SS’06). USENIX Association, Article 1. http://dl.acm.org/
citation.cfm?id=1267336.1267337

[6] Graham Cluley. 2013. 55% of net users use the same password for most,
if not all, websites.Whenwill they learn? https://nakedsecurity.sophos.
com/2013/04/23/users-same-password-most-websites/ [last accessed
2018-02-09].

[7] Alexei Czeskis, Michael Dietz, Tadayoshi Kohno, Dan S. Wallach, and
Dirk Balfanz. 2012. Strengthening user authentication through op-
portunistic cryptographic identity assertions. In ACM CCS, Ting Yu,
George Danezis, and Virgil D. Gligor (Eds.). ACM, 404–414. https:

//doi.org/10.1145/2382196.2382240
[8] Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S. Lam.

2010. Secure, Consumer-Friendly Web Authentication and Payments
with a Phone. In MobiCASE (LNICST), M. L. Gris and G. Yang (Eds.),
Vol. 76. 17–38.

[9] Duo Security Inc. 2015. Duo Mobile. https://play.google.com/store/
apps/details?id=com.duosecurity.duomobile [last accessed 2018-02-
09].

[10] Google Inc. 2013. Google Authenticator. https://github.com/google/
google-authenticator-android/ [last accessed 2018-02-09].

[11] Steffen Hallsteinsen, Ivar Jorstad, and Do Van Thanh. 2007. Using
the Mobile Phone as a Security Token for Unified Authentication. In
ICSNC. 68.

[12] Eiji Hayashi and Jason I. Hong. 2015. Knock x Knock: The Design
and Evaluation of a Unified Authentication Management System. In
UbiComp. ACM, 379–389. https://doi.org/10.1145/2750858.2804279

[13] Troy Hunt. 2019. The 773 Million Record Collection #1 Data
Breach. https://www.troyhunt.com/the-773-million-record-collection-
1-data-reach/ [last accessed 2019-03-16].

[14] Google Inc. 2016. Sign in faster with 2-Step Verification phone
prompts. https://support.google.com/accounts/answer/7026266?hl=
en&ref_topic=7189145 [last accessed 2018-02-09].

[15] Nikolaos Karapanos, Claudio Marforio, Claudio Soriente, and Srdjan
Capkun. 2015. Sound-Proof: Usable Two-Factor Authentication Based
on Ambient Sound.. In USENIX Security. 483–498.

[16] Brian Krebs. 2016. The Limits of SMS for 2-Factor Authentica-
tion. https://krebsonsecurity.com/2016/09/the-limits-of-sms-for-2-
factor-authentication/ [last accessed 2018-02-09].

[17] Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder, and Sampath
Srinivas. 2017. Security Keys: Practical Cryptographic Second Factors
for the Modern Web. In FC, Jens Grossklags and Bart Preneel (Eds.).

[18] Mohammad Mannan and P. C. Van Oorschot. 2007. Using a Personal
Device to Strengthen Password Authentication from an Untrusted
Computer. In FC (LNCS), S. Dietrich and R. Dhamija (Eds.), Vol. 4886.
88–103.

[19] Jon Oberheide. 2015. Estimating Google’s Two-Factor (2SV) Adoption
with Pen, Paper, and Poor Math. https://duo.com/blog/estimating-
googles-two-factor-2sv-adoption [last accessed 2018-02-09].

[20] Bryan Parno, Cynthia Kuo, and Adrian Perrig. 2006. Phoolproof Phish-
ing Prevention. In FC (LNCS), G. Di Crescenzo and A. D. Rubin (Eds.),
Vol. 4107. 1–19.

[21] Maliheh Shirvanian, Stanislaw Jarecki, Nitesh Saxena, and Naveen
Nathan. 2014. Two-Factor Authentication Resilient to Server Compro-
mise Using Mix-Bandwidth Devices. In NDSS. The Internet Society.

[22] Andrew Song. 2011. Introducing Login Approvals.
https://www.facebook.com/notes/facebook-engineering/introdu-
cing-login-approvals/10150172618258920/ [last accessed 2018-02-09].

[23] Guenther Starnberger, Lorenz Froihofer, and Karl M. Göschka. 2009.
QR-TAN: Secure Mobile Transaction Authentication. In ARES. IEEE
Computer Society, 578–583.

[24] Roland M. Van Rijswijk and Joost Van Dijk. 2011. Tiqr: A Novel Take
on Two-factor Authentication. In LISA (LISA’11). USENIX Association.

[25] W3C. 2018. Web Authentication: An API for accessing Public Key
Credentials. https://www.w3.org/TR/webauthn/ [06.07.2018].

[26] Nathan Willis. 2014. FreeOTP multi-factor authentication. https:
//lwn.net/Articles/581086/ [last accessed 2018-02-09].

[27] Jeffrey Yasskin. 2016. The Web Bluetooth Security Model.
https://medium.com/@jyasskin/the-web-bluetooth-security-model-
666b4e7eed2.

https://support.apple.com/en-us/HT204915
https://support.apple.com/en-us/HT204915
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.pdf
http://dl.acm.org/citation.cfm?id=1267336.1267337
http://dl.acm.org/citation.cfm?id=1267336.1267337
https://nakedsecurity.sophos.com/2013/04/23/users-same-password-most-websites/
https://nakedsecurity.sophos.com/2013/04/23/users-same-password-most-websites/
https://doi.org/10.1145/2382196.2382240
https://doi.org/10.1145/2382196.2382240
https://play.google.com/store/apps/details?id=com.duosecurity.duomobile
https://play.google.com/store/apps/details?id=com.duosecurity.duomobile
https://github.com/google/google-authenticator-android/
https://github.com/google/google-authenticator-android/
https://doi.org/10.1145/2750858.2804279
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://support.google.com/accounts/answer/7026266?hl=en&ref_topic=7189145
https://support.google.com/accounts/answer/7026266?hl=en&ref_topic=7189145
https://krebsonsecurity.com/2016/09/the-limits-of-sms-for-2-factor-authentication/
https://krebsonsecurity.com/2016/09/the-limits-of-sms-for-2-factor-authentication/
https://duo.com/blog/estimating-googles-two-factor-2sv-adoption
https://duo.com/blog/estimating-googles-two-factor-2sv-adoption
https://www.facebook.com/notes/facebook-engineering/introducing-login-approvals/10150172618258920/
https://www.facebook.com/notes/facebook-engineering/introducing-login-approvals/10150172618258920/
https://www.w3.org/TR/webauthn/
https://lwn.net/Articles/581086/
https://lwn.net/Articles/581086/
https://medium.com/@jyasskin/the-web-bluetooth-security-model-666b4e7eed2
https://medium.com/@jyasskin/the-web-bluetooth-security-model-666b4e7eed2

	Abstract
	1 Introduction & Related Work
	2 Threat Model
	3 SecuriCast Implementation
	4 User Study
	5 Theoretical Analysis
	6 Discussion & Future Work
	References

