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Abstract

We present a mass-spring system for interactive simulation of deformable bodies.
For the amount of springs we target, numerical time integration of spring displacements
needs to be accelerated and the transfer of displaced point positions for rendering must
be avoided. To fulfill these requirements, we exploit features of recent graphics ac-
celerators to simulate spring elongation and compression in the graphics processing
unit (GPU), saving displaced point masses in graphics memory, and then sending these
positions through the GPU again to render the deformed body. This approach allows
for interactive simulation and rendering of about one hundred thousand elements and
it enables the display of internal properties of the deformed body. To further increase
the physical realism of this simulation, we have integrated volume preservation and
additional physics based constraints into the GPU mass-spring system.

1 Introduction

To study the motion of a mechanical system caused by external forces, physics based simu-
lation is needed. For a set of connected rigid or flexible parts exhibiting material dependent
properties, the equations of motion can be formulated and solved to predict the dynamic
behavior of such systems. Even for simple abstractions, however, calculations involved are
usually too expensive as to allow for real-time simulation of reasonably sized objects. To
visualize system dynamics, the geometric representation of the system has to be modified
according to the computed motion. If the simulation is carried out on the CPU, in every
animation frame the displaced geometry has to be sent to the GPU for rendering purposes,
thus decreasing performance.

In this paper, we have implemented a mass-spring system based on tetrahedral grids. Ele-
ment edges are treated as springs, which connect pairs of mass points. Under the influence
of external forces, e.g. forces exerted by user interaction, gravity or collision forces, the
object deforms into a configuration where the external forces are compensated by opposing
internal forces. In the most basic form, only the springs themselves exert forces by which
they seek to preserve their rest length when compressed or stretched. The resulting force
can then be obtained using Hooke’s Law.

The proposed implementation distinguishes from previous approaches in that physics based
simulation and rendering of deformable bodies is performed on programmable graphics



hardware. In parallel fragment units, forces applied to a vertex are computed and accumu-
lated. To render the deformed volumetric body, we exploit a feature on recent ATI graphics
hardware that allows graphics memory to be treated as a render target, a texture, or vertex
data. Thus, displaced vertex coordinates can be directly rendered without any read-back
to CPU memory. In this way, a significant speed up can be achieved both for numerical
simulation as well as for rendering. As our test have shown, the GPU realization performs
about a factor of 20 faster than CPU solution. Moreover, because the entire body resides in
GPU memory, not only can the surface of the body be displayed but also interior properties
like forces or stresses.

2 Related Work

Simulation of deformable bodies has evolved as an important topic of research. Most
commonly, simulation techniques for deformable models in computer animation account
for elastic or viscoelastic (damped) Hookean materials. In solid mechanics the governing
equations describing such materials have been studied extensively, and they have been fre-
quently employed in computational science and engineering.

In computer graphics, many different approaches for simulating deformable objects have
been derived over the last decades (see [GM97] for a thorough overview of early work in
this field). From a large scale perspective, previous techniques for simulating the changes
of volumetric objects due to external and internal forces can be classified according to
the underlying object discretization, the object’s intrinsic deformation behavior, i.e. strain
measure, and the method employed to integrate the equations of motion over time.

Finite element methods, originally arising from the area of computational sciences, are
commonly employed to realistically model continuous deformable objects. Volumetric ob-
jects are usually decomposed into linear tetrahedral elements, and the equations of elastic-
ity theory are solved based on this discretization. The solution to these systems can either
be found implicitly, e.g. in [BNC96, MMDJO01], or by using time explicit solvers as it was
done in [2C99, DDBCO01, WDGTO01, MDM™02]. However, these approaches result in high
numerical effort, and hence only allow for the simulation of small models in realtime.

The most efficient techniques for simulating deformable objects based on physical proper-
ties are mass-spring systems. Lots of work has been done in this specialized field, including
[LTW95, DSB99, BFA02, FGLO03]. Mass-spring systems cannot simulate the real physical
behavior of the deformable body, as they only use a simplified model. Continuous bodies
are approximated by a finite set of point masses, which are connected via links to account
for material stiffness. But, using this simple method, one can achieve great visual results in
applications, where physical accuracy is not necessary. As a consequence of model’s sim-
plicity, mass-spring systems were often extended to more realistically approximate prop-
erties in the specific application area [Pro95]. For example, [LTW95, THMGO04] expanded
mass-spring systems to incorporate volume-preserving forces and plasticity.

But mass-spring systems lack in that finding proper spring constants to realistically simu-
late real materials is quite cumbersome. [Gel98] showed, how to choose spring constants
to model homogenous materials. Spring constants can also be configured automatically by



neural networks that have been trained to mimic the dynamic behavior of special materials
[RNPO1].

After this short overview of previous work, we now will continue with some deeper insight
into physics and dynamics of mass-spring systems. Afterwards, we will show how to im-
plement these techniques on a programmable graphics processor. At the end, we will show
our results and compare them to CPU solutions.

3 Theory
3.1 Mass-Spring Systems

Let us continue with a closer look at the ideas behind mass-spring systems. Starting with
a volumetric body representation, we imagine the mass of the body condensed in discrete
vertices, which are connected to each other via springs. Doing so, we get a representation
based on single mass-points which are connected in an irregular way. However, the springs
can freely rotate, but have to satisfy Hooke*s law
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Here, D describes the stiffness of the spring, while | = x — «; is the distance between two
connected mass-points p and p;. [y is the rest length of the spring in its initial configuration.
Thus, the resulting force of this spring acting on p is calculated as shown above. Now you
can accumulate the forces over all neighbors of p, which should be in balance with external
forces F,, acting on the single mass-point.
To update the position = of a vertex in a dynamic simulation, we use Lagrange‘s law of
motion
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with m being the mass of p and ¢ being the damping constant. N denotes the 1-
neighborhood of p. Typically, we restrict ourselves to explicit time integration schemes
to avoid solving a nonlinear equation system, as forces F; depend on the positions of all
mass-points. Given a timestep dt, we can easily get the new position for every vertex us-
ing the Verlet integration scheme, as it was found to be one of the most efficient scheme
with regard to the largest possible timestep in [THMGO04]. Then, the new position of the
mass-point can be computed as

x(t +dt) = Ft%(t)dﬁ +22(t) — x(t — dt).

Here, the total resulting force F},; is defined as
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As force calculations are based on the positions of the last time step, we can calculate
the forces F},; for every mass-point of the body in parallel. After accumulating the forces
for every mass-point, we can then update the positions of every vertex based on their cor-
responding forces also in parallel. Note, that after the position update, all springs have
changed their length in general, and thus external and internal forces are no longer in bal-
ance. This is the reason why it is necessary to choose small integration timesteps to get
convergence in a short period of time.

In addition, mass-spring systems are vulnerable to large time steps because of the explicit
time integration scheme. With respect to the so-called courant constant, you have very
hard constraints for the largest possible time step to achieve stable simulation; this has
the drawback, that many time steps per second have to be processed, resulting in a high
numerical workload. In the next chapter, we will describe an effective way to use the GPU
as a high performance parallel processor in order to exploit the intrinsic parallelism of
the approach. As the actual graphics processors generation is fully programmable, we can
simulate the physics as well as render the body with its updated positions without need for
copying large amounts of data via the bus system.

3.2 Volume Preservation

We want to mention an addition to conventional mass-springs systems to enforce volume
preservation. It is well known, that mass-spring simulations cannot preserve volume, as
they are not based on volumetric simulation. Therefore, it can (and will) easily happen,
that you run into stable states where parts of the model are flipped. Since in that case the
springs are no longer stretched, the model is in a totally stable configuration. To avoid
such an unwanted behavior, we introduce artificial volume preserving forces as introduced
by [LTW95]. We regard the volumetric body as an irregular tetrahedral mesh with vertices
used as mass-points and edges interpreted as springs; then, based on its initial configuration,
we can establish a rest length for every spring and a rest volume for every tetrahedron. For a
single mass-point p, we then collect additional forces for every adjacent tetrahedron based
on the actual volume v compared to his rest volume v using an artificial volume stiffness
parameter D,,:
F, =Dy(v—uvo)n

Here, n is the unit-length normal of the opposite tetrahedral face. As points might move,
the normal has to be recalculated in every timestep. Using this technique, we avoid flipped
tetrahedral elements, since in that case the volume would be negative. The resulting large
force F;, pushes the tetrahedron towards its initial state.

4 GPU Implementation

Early generations of graphics processors were solely optimized for the rendering of lit,
shaded and textured triangles. The rendering pipeline was implemented by a set of special-
purpose but fixed-function engines, prohibiting the use of such chips in non-rendering
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Figure 1: Stages of the programmable graphics pipeline are illustrated.

applications. Nowadays, this design is abandoned in favor of programmable function
pipelines that can be accessed via high level shading languages [MGAKO3, Mic02].

On current GPUs, fully programmable parallel geometry and fragment units are available
providing powerful instruction sets to perform arithmetic and logical operations. In addition
to computational functionality, fragment units also provide an efficient memory interface to
server-side data, i.e. texture maps and frame buffer objects. Not only can application data
be encoded into such objects to allow for high performance access on the graphics chip,
but rendering results can also be written to such objects, thus providing an efficient means
for the communication between successive rendering passes. Figure 1 gives an overview of
the rendering pipeline as it is implemented on current GPUEs.

In recent years, a popular direction of research is leading towards the implementation of
general techniques of numerical computing on such hardware [HBSLO03, BFGS03, KWO03].
The results of these efforts have shown that for compute bound applications as well as for
memory bandwidth bound applications the GPU has the potential to outperform software
solutions. However, this statement is valid only for such algorithms that can be compiled
to a stream program, which then can be processed by SIMD kernels as provided on recent
GPUs. As we will show, mass-spring systems exhibit this property.

5 Mass-Spring Model

In the current scenario, without loss of generality we restrict the discussion to tetrahedral
meshes. To develop an appropriate data structure for this kind of meshes we first have to
think about the operations to be performed on this structure.

Thinking in terms of tetrahedral elements, for each of the four corner points a force vector



has to be computed. This vector depends on the elements’ edge lengths and volumes as
well as the respective rest and hardness values. For each mesh vertex these forces are finally
summed up by looping over all tetrahedra.

This strategy, however, suffers from certain peculiarities of current graphics hardware.
Because current GPUs have a 128 Bit shader-to-memory interface, only one single 4-
component float vector can be written to memory at a time. A shader can write multiple
float vectors in one single pass, but this is actually as expensive as writing one vector in
multiple passes.

In addition, so called dependent texture fetches slow down the performance considerably.
Dependent texture fetches read from a texture address that has been determined from a
texture value that was fetched earlier. Such operations essentially prevent the GPU from
issuing all texture fetches in parallel, and it is therefore desirable to have as few dependent
fetches as possible.

If we investigate the aforementioned approach, it is easy to see that it requires 4 (internal)
rendering passes, each pass performing 4 dependent texture fetches as the shader program
first has to read the indices of the four corner points. This makes a total of 16 dependent
fetches per tetrahedron and simulation step.

A more efficient data structure is based on the observation, that to predict the dynamic
behavior of the mass-spring model, in every frame every mesh vertex v must calculate the
exerting force vector. This vector is influenced by the one-ring neighborhood around v, i.e.
all mesh vertices that are connected to v via a spring. To account for volume preservation,
every vertex computes the volume loss or gain of all adjacent tetrahedra and tries to correct
this change by an additional displacement. Therefore, access to all tetrahedral elements
sharing the center vertex v is required. Because both operations are performed in parallel
for every vertex in the mesh, they are perfectly suited for a realization on data parallel
stream architectures like GPUs.

To optimally exploit the architecture of recent GPUs (including parallel computations and
high memory bandwidth), we have implemented a vertex based data structure. First, a 2D
vertex texture is created, which stores mesh vertices in the RGB color components. We then
construct a stack of equally sized 2D textures, each of which encodes one of the tetrahedral
elements adjacent to the respective vertex in the vertex texture. Tetrahedra are encoded by
three references into the vertex texture and a stiffness values, as well as three spring rest
lengths and the rest volume of the tetrahedron. These values are stored in a pair of RGBA
textures.

Now, on a per-vertex basis we keep track of forces due to compression or stretching by fol-
lowing reference to connected mass points. In a fragment shader, exerted forces are com-
puted for every vertex in parallel, and at every node the resulting forces are accumulated.
If the force calculation is not executed per tetrahedron, but per mass point, only three de-
pendent fetches are needed per point, making a total of 12 such operations per tetrahedron
and simulation step. Note that the index of one of the points (the current center vertex) is
already known and does not need to be fetched. In pseudo code notation the program now
looks as follows:



for every point pO
for every tetrahedron t incident on pO

/1 via three texture fetches

get center vertex coordinate p0

get corner indices i1-3, get elenent stiffness es
get rest spring lengths |1-3, get rest volune v,

/1 via three dependent fetches
get coordi nates of pl-3 through i1-3

cal cul ate force on po
add to total force on pO
end for
end for

vov_.1l V.2
EEEEEN EEN
EEEEEN EEN

EEEEEENEN EEN

EEEEEEEN EEE

EEEEEEEEEEEEEN
EEEEEEEEEEEEEN A
|
|
|

Figure 2: Stack of valence textures. The smallest square contains all points that have highest
valence. This results in various valences in range Vj. The next bigger power-of-two square
contains all vertices from the smallest square, and is filled with vertices with remaining
highest valences. Therefore, range of valence of the new vertices can be determined as V.
This can be repeated until no vertices are left, resulting in a stack of power-of-two textures.



5.1 Valence Textures

The described data structure has the drawback that the texture stack must be large enough
to keep a number of references equal to the maximum valence of any of the mesh vertices.
In typical meshes, however, we see a rather inhomogeneous distribution of valences. For
instance, in the meshes we have used to demonstrate our approach valences ranging from
6 to 32 can be found. To avoid the memory overhead that is introduced by storing for every
vertex as many neighbors as the maximum valence in the mesh, we construct different
texture stacks.

Initially, mesh vertices are sorted with respect to valence. Then, we recursively generate
stacks of 2D textures at ever decreasing size, which store topology and additional param-
eters. We build a 2D texture large enough to keep all vertices, and we construct a stack
of V,.in equally sized textures, where V,,,;,, is the minimum valence of all vertices. These
textures are filled with respective references into the vertex texture. Note that the layout of
values in these textures is with respect to decreasing valence from top/left to bottom/right
(see Figure 2). We then remove all vertices with a valence equal to V,,,;,, from this texture,
and we continue the recursive process with this texture. This procedure is repeated until all
vertices have been discarded.

In every animation frame, a set of quadrilaterals covering as many fragments as there are
values in the respective stack textures is rendered, and force contributions are computed
for every remaining vertex. Already accumulated results are rendered into a texture render
target, which can be accessed in upcoming passes to retrieve summed values. In a final pass,
the differently sized render targets covering the force vectors of vertices having a particular
valence are merged into a texture as large as the vertex texture.

5.2 Rendering Deformable Bodies

In OpenGL, textures are accessed via texture objects encapsulating the raw image data
and texture parameters like wrapping or sampling behavior. While this makes textures easy
to use it imposes some restrictions on the systems functionality, because of the lack of a
direct texture memory access. For instance it was previously not possible to directly render
primitives into the texture memory as if it would be the frame buffer. Over time some
extensions have been proposed and implemented to diminish this restriction like the render-
to-texture extension. However, these extensions are often complex to use and address only
special cases thus limiting functionality.

The memory object interface allows the application to allocate graphics memory directly,
and to specify how this memory is to be used. This information, in turn, is used by the driver
to allocate memory in a format suitable for the requested uses. When the allocated memory
is bound to an attachment point (a render target, texture, a vertex or color array), no copying
takes place. The net effect for the application program therefore is a separation of raw GPU
memory from OpenGLs semantic meaning of the data. In our current implementation, a
memory object is subsequently bound as the current texture render target and as a vertex
array used to hold displaced vertex positions.

On the GPU we construct an indexed vertex array, which references into the vertex texture.
In this array, every tetrahedron is represented by 4 triangles. This array remains fixed over
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Figure 3: On the left hand side, forces are visualized on the objects surface during user
interaction. On the right hand side, forces are visualized on all interior edges, while the
bunny is pushed on its snout.

the entire animation and never has to be updated unless the mesh topology is changed. In
every animation pass, the vertex array is rendered and the updated vertex texture is issued
as coordinate array. Thus, any data transfer between the CPU and the GPU can be avoided,
and we can also render the 3D mesh structure.

As an additional rendering option, the strength of the computed displacements can be vi-
sualized either on the mesh boundary or on the interior edges (see Figure 3). The mesh
boundary is rendered as an additional indexed vertex array, and triangle primitives are lit
and shaded. Interior structures are rendered as colored line primitives, because volume ren-
dering of tetrahedral grids is still too expensive as to allow for interactive rates.

6 Discussion and Results

Figure 4 shows deformations on different objects that have been performed using the pro-
posed GPU mass-spring system. As our implementation accelerates both simulation and
rendering of the deformed bodies, our timings include the entire simulation. Table 1 shows
the timings for differently sized models. The peek performance we achieve on the ATI
Radeon X800 is reached with about 84k tetrahedral elements. For larger models, simula-
tion performance basically remains the same, but rendering becomes significantly slower
due to increasing geometry load.

When comparing our results to those published in [THMGO04], we recognize a speedup of
about a factor of 20. Our peek-rate is 8.9 million tetrahedra per second (TPS) compared to
310 thousands TPS (including rendering) reported in Teschner et al. Please note, that — as
it is typical for explicit time integration schemes — rendering does not take place in every



model tetrahedra computation&  TPSrating FPS
rendering time [ms]

Cuboid 5012 2.70 1854440 370
Liver 7536 2.80 2690352 357
Stanford Bunny 9804 2.95 3313752 338
Double Bunny 19608 3.26 6019656 307
Large Bunny 84104 8.26 8999128 121

Table 1: GPU simulation performance values (with rendering) on ATl Radeon X800. As
the integration timestep is fixed to 4ms, a framerate of 250 fps or above denotes real-time
simulation.

simulation frame, but in every 5th step, so that we achieve a visual update rate of about
50Hz. If only the net simulation time excluding rendering is compared, we are still about a
factor of 10 faster.

However, the drawback of our method is that it introduces a significant memory overhead.
Neighboring tetrahedra are stored for every vertex separately, hence every tetrahedron is
stored 4 times in total. Furthermore, as tetrahedra share common edges, spring forces are
calculated multiple times, depending on the valence of the adjacent vertices.

It is also worth noting, that in the case of simple mass-spring systems without volume-
preservation, the calculation of spring forces only has to be done twice — one time for every
adjacent vertex. Without volume preservation, however, stability can not be guaranteed in
general.

Although edge-based data-structures are more memory-efficient, they introduce other prob-
lems. In particular, because in a final step the forces have to be accumulated per vertex, re-
spective floating point values have to be blended. However, floating point blend operations
are currently not supported in full precision and hence, such scatter operations cannot be
implemented efficiently. To overcome this burden, memory-intensive data structures have
to be used. In a first pass you can calculate spring-forces for every edge and store them in
an edge force texture. As you need to calculate volume-preserving forces for every tetrahe-
dron, you need a tetrahedra-based data structure too. A second pass would combine spring
forces fetched from the edge force texture with volume-preservation forces for every tetra-
hedron. The result is a large texture containing 4 force vectors per tetrahedron. As the
shader-to-memory interface is limited to 128 Bit, we have to use 4 passes to write the tetra-
hedra force texture, which slows down the overall performance. Additionally, you have to
use several passes to sum up all forces that correspond to a single vertex using a vertex
based datastructure as described before, that contains only indices in the tetrahedra-based
force texture.

7 Conclusion

In this paper, we have demonstrated a physical based simulation engine that is exclusively
realized on the GPU. Accumulation of forces and time integration are performed in frag-



ment shader programs, thus exploiting the computing power of current GPUs. Displaced
vertices are stored in OpenGL memory objects, which can subsequently be interpreted as
textures or vertex arrays. Hence we can render the deformed object directly, without the
need to download the data to the CPU and sending them again to the GPU for rendering
purposes. Using these techniques, we achieve a significant performance gain compared to
CPU implementations of mass-spring systems.
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