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Figure 1: HeadsUp: mobile collision warnings using Doppler-shifted ultrasound signals.

ABSTRACT

Smartphone-using pedestrians are often distracted, leading to fre-

quent accidents of varying severity with a risk of both awkwardness

and injury. We introduce HeadsUp, a mobile app designed to warn

the user of imminent collisions with solid obstacles. HeadsUp runs

on unmodi�ed commodity smartphones without additional hard-

ware and uses active ultrasound sensing based on the Doppler e�ect.

We contribute an analysis of the ultrasound audio characteristics

of six di�erent smartphone models to verify the feasibility of our

approach across vendors and device classes, and a description of

two implementation variants of our signal processing pipeline. We

evaluate our system both in a lab environment and under real-world

conditions, and we conclude that HeadsUp can e�ectively work

at a range of up to 3 meters, even though overall performance is

heavily dependent on both the individual user and the environment

characteristics.

CCS CONCEPTS

• Human-centered computing → Smartphones; Field studies;
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1 INTRODUCTION

Pedestrians who use their smartphones while walking are usually

distracted and therefore prone to accidents. Shortly after the in-

troduction of the iPhone in 2009, this phenomenon was already

sarcastically described as "Death by iPhone" [12], and the British

Automobile Association predicted in 2010 that a growing propor-

tion of tra�c deaths and casualties would result from distracted

tra�c participants [25]. More recent results from the United States

support this theory, as pedestrian fatalities have increased at 4 x

the rate of overall deaths in tra�c [14], and a study from Korea

also found a correlation between smartphone addiction and ac-

cident rate [7]. To counter this issue, some cities (e.g. Augsburg

[11], Bodegraven [22], or Seoul [27]) have recently experimented

with embedding additional tra�c lights into the pavement at crit-

ical intersections to capture the attention of downward-looking

pedestrians, while Ilsan in South Korea has seen the installation

of warning projectors which show alerts on the ground near road

crossings [15].

To address this issue, we explore collision sensing that happens

unobtrusively in the background. HeadsUp, our collision-warning

system runs on unmodi�ed commodity smartphones using the de-

vices’ audio system to emit an inaudible ultrasound signal. The

simultaneously recorded audio data is analyzed for the presence of
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the re�ected and Doppler-shifted signal that indicates an approach-

ing object. When a signal is detected in the correct frequency range

that matches the walking speed of the phone-using pedestrian and

the relative speed of common obstacles in urban environments

(cars, other pedestrians, stationary objects), a noti�cation is shown

to warn the user.

2 RELATED WORK

An alternative approach to solve the problem of increasing pedes-

trian accidents is to design applications that are less distracting for

the user. Various research projects have looked into limiting the

use of addictive apps (AppDetox [10]), into using wearables and

non-visual feedback to improve attention on the environment (Shoe

Me The Way [19]), into showing a live camera view as background

for the keyboard (Type’n’Walk [9]), into better management of

noti�cations [26], or even into using drones as mobile guides for

urban navigation [2].

However, the fact remains that users can be expected to look

at their devices while on the move, as this is one of the de�ning

features of mobile devices. We, therefore, do not consider HeadsUp

as a replacement for the approaches described above, but rather as

a complementary feature that has the potential to further reduce

the risk of accidents in urban environments.

A related approach is BumpAlert by Tung and Shin [23], which

also attempts to warn distracted smartphone users about obstacles

by using a combination of acoustic signal runtime analysis and

camera video analysis. However, as opposed to our approach, the

system has to deal with multipath re�ections from both stationary

and moving objects, and requires a speci�c posture of the user

holding the mobile device for camera data. In addition, users found

the audible 11 kHz signals used here to be distracting.

Another area of work relevant to our approach is support for

visually impaired users. Various existing projects have looked into

using ultrasound collision detection for this task, using e.g. sensors

embedded in a vest [20], in an overall [16], in a bracelet [17], in a

belt [18], or in a cane [1]. However, these approaches all have in

common that they use dedicated extra sensor hardware that has to

be carried by users in addition to their smartphone, and which can

be expected to lower user acceptance noticeably.

Regarding the usage of ultrasound on commodity hardware, an

early example is SoundWave by Gupta et al. [5] which used the

built-in speaker and microphone of a laptop to recognize in-air

hand gestures. Ultrasound is emitted from the laptop’s speaker, and

any signals re�ected by a nearby moving object are recorded by the

microphone. The recorded data is then analyzed for Doppler-shifted

signatures of prede�ned gestures, which include single and double

tap, scrolling, and "two-handed seesaw". While the fundamental

approach is similar to ourwork, SoundWave only recognizesmotion

in front of a stationary device at a maximum distance of one meter.

Biying et al. [4] investigated the feasibility of gesture and activity

recognition around a smartphone as well. For recognizing hand

gestures, similar to SoundWave, they performed di�erent hand

gestures over a stationary device and used the Doppler shift to

recognize hand approaching, hand withdrawal, swipe motion of

right-to-left and left-to-right, and seesaw motion. The other pur-

pose of their study was activity recognition from three prede�ned

categories of sleeping in a bed, getting up from bed and walking

away from it, and everyday desk work. They showed that their

methods for hand gesture and activity recognition were feasible

for a limited number of prede�ned gestures and activities in case

the device was stationary, but when the device was held in hand,

carried on the body, or covered with clothes, the received signal

was strongly attenuated, and the system was exposed to strong

noise.

Sun et al. presented VSkin [21], a novel way of interacting with

mobile devices by sensing touch gestures on surfaces of the de-

vice. VSkin detects touch gestures with high accuracy using both

structure-borne sounds (propagation of sound through the struc-

ture of the device), and air-borne sounds, the propagation of sound

through the air. This was achieved by measuring the amplitude

and the phase of each path of sound signals. The system detected

tapping events with an accuracy of 99.65% and captured �nger

movements with an accuracy of 3.59 millimeters. MilliSonic [24]

by Wang and Gollakota reaches even higher positional accuracy in

the sub-millimeter range by using an external microphone array.

Apart from the usage of ultrasound in gesture recognition and

motion detection for interaction, in medical science, Nandakumar

et al. [13] proposed a contactless system for detecting restricted

breathing due to opioid overdose using inaudible acoustic signals

from the smartphone’s speaker and the measured frequency shift.

They produced a short-range active sonar system by a frequency-

modulated continuous waveform and tracked breathing in people

for the diagnosis of opioid overdose by motions of the chest. They

showed that by providing the proper connectivity to emergency

calls in case of a detected overdose, their system prevented fatal

outcomes.

3 BACKGROUND

HeadsUp is based on the Doppler e�ect, which describes the fre-

quency shift experienced by a receiver when recording signals from

a source which is moving relative to the receiver. The base equation

for calculating this shift is:

5 = 50 ∗

(

� ±+A

� ±+B

)

(1)

with 50 base frequency, � wave velocity (343 m/s for sound un-

der standard conditions), and +A /+B speed of receiver and source,

respectively (signs depend on relative direction of motion). How-

ever, in our scenario, we are analyzing re�ected signals, with source

and receiver being coincident in the smartphone. This case can be

modeled as two separate Doppler shifts, one before and one after

re�ection, resulting in the following equation:

5 = 50 ∗

(

� ±+>1 9

� ±+DBA

)

∗

(

� ∓+DBA

� ∓+>1 9

)

(2)

As above, the individual signs of the inner fractions depend on

the relative direction of movement (object approaching user or user

following object). Based on this equation, we can now calculate

the expected Doppler shift for plausible scenarios once we select a
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suitable base frequency.

Since our approach works exclusively in the frequency domain

(i.e. detection of a speci�c frequency in the recorded signal), it is

una�ected by multipath re�ections and other signal degradations

which manifest in the time domain. Also, since we do not need

to di�erentiate between several types of motion as e.g. [5] does,

our signal processing is less sensitive to background noise and can

therefore work at longer ranges.

As a standard Android smartphone is capable of playing back

and recording audio data with a maximum sample rate of 48 kHz,

the Nyquist limit places the highest possible frequency that can still

be processed at 24 kHz. However, as the audio hardware of smart-

phones is primarily designed to operate in the audible frequency

range up to at most 18 kHz, we cannot assume that these high fre-

quencies can be reliably used. We, therefore, select a base frequency

of 20 kHz as a "sweet spot" that is well above the hearing limit

even for children and young adults, but still below the Nyquist limit

and well within the capabilities of most commodity smartphones.

This is in line with the frequency used by other ultrasound-based

systems such as Biying et al. [4].

4 FEASIBILITY STUDY

To con�rm that our assumptions about smartphone audio capa-

bilities are correct, we conducted an initial feasibility study with

external sound equipment to characterize a variety of devices from

the last 5 years: Motorola Moto E and Sony Xperia XZ1 Compact

(low-end), LGE Nexus 5 and LGE Q6 M700 (mid-range), ZTE Axon

7 and Motorola Moto Z (high-end). Our goal was to verify whether

this sample of devices would be capable of a) emitting suitable ultra-

sound signals, b) recording the re�ection with su�cient sensitivity,

and c) providing satisfactory noise characteristics. We assume that

this sample across various model years, manufacturers, and price

classes is representative of at least 90% of smartphones currently

in use.

4.1 Playback

In the �rst test phase, we used a Behringer U-Phoria UMC404 au-

dio interface with a sampling rate of 192 kHz at 16 bit resolution

and an Audix TM-1 measurement microphone with a calibrated 25

kHz upper-frequency limit. All data was analyzed using the open-

source audio workstation software Audacity1. Using this setup, we

recorded a continuous 20 kHz ultrasound sinewave signal played

back from the individual devices with maximum volume, at dis-

tances of 0 m, 3 m, and 6 m. All devices were placed horizontally on

a �at surface, with the bottom of the device facing towards the mi-

crophone. Note that the LG Q6 and the Moto Z produced distinctly

audible subharmonics in this scenario.

We then analyzed a continuous 5-second stretch of recorded

audio with a 4096-sample Fast Fourier Transform (FFT) using a

Hann window function. At close range, the signal from the Moto Z

was loud enough to cause clipping of the audio signal, resulting in

a positive dB value. As shown in �gure 2, all tested devices achieve

1https://www.audacityteam.org/

Figure 2: Amplitude of 20 kHz ultrasound emitted from

smartphone speakers. Measurements on the x-axis are in

dB relative to the maximum recording amplitude of the ex-

ternal UMC404 audio interface (higher values are louder),

distance on the y-axis is in meters.

a signal strength of at least -40 dB at a distance of 3 m. Note that

all signal strength measurements are relative to the maximum am-

plitude which the system can record, i.e. 0 dB = 2
16 − 1.

4.2 Recording

In the second test phase, we used a microcontroller (Arduino Micro)

driving a piezo transducer as an ultrasound source at a frequency

of 20 kHz, as consumer audio hardware often contains additional

bandpass �lters that heavily attenuate signals above 18 kHz. Using

the UMC404 interface and Audix TM-1 microphone as above, we

con�rmed that this setup emits 20 kHz ultrasound with a signal

strength of about -12.3 dB at close range, similar to the devices

tested previously. We then recorded this signal via the individual

devices’ microphones, again at distances of 0 m, 3 m, and 6 m,

with the devices placed on a �at surface and the bottom facing the

emitter. Signal analysis was performed as before.

Figure 3: Amplitude of 20 kHz ultrasound recorded by smart-

phone microphones. Measurements on the x-axis are in dB

relative to the maximum recording amplitude of the indi-

vidual smartphones (higher values are louder), distance on

y-axis is in meters.
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As shown in Figure 3, all phones are capable of recording the

signal at all tested distances, however at greatly reduced signal

strength. Based on the �rst phase of the test, we can assume that

an object at a distance of 3 meters will receive a signal strength

of at least -40 dB when the signal is emitted from a smartphone

(cf. Figure 2, center group). As an emitter with comparable signal

strength was used in the second test phase, even taking potential

re�ection losses into account, we can conclude that our approach

will work at a distance between user and object of at least 3 meters.

4.3 Signal Bandwidth

For the third test phase, we analyzed the bandwidth of the recorded

signal when the phone is both emitter and receiver in a quiet en-

vironment. The emitted sound (pilot tone) will also be directly

recorded by the devices’ own microphone at a very high volume.

Consequently, any re�ected sound that is too close to the pilot

tone’s base frequency of 20 kHz will be drowned out in the result-

ing frequency spectrum, particularly as any re�ection will also be

at least 1-2 orders of magnitude less powerful than the pilot tone.

For signal analysis, we again used a FFT with a window size

of 4096 samples (equivalent to 85.3 ms window duration) and a

Hann window function. Using the kiss-fft library2, processing

time for one window is about 25 ms on a mid-range smartphone,

so real-time processing of each bu�er is easily possible while the

next one is being recorded.

Figure 4: Relative bandwidth of 20 kHz ultrasound pilot tone,

re-recorded by smartphone microphones. The x-axis shows

the center frequency of each FFT bin, y-axis shows measure-

ments in dB relative to maximum recording amplitude of

the individual smartphones.

Due to spectral smearing and aliasing errors, both during play-

back and recording, the re-recorded signal will no longer result in a

single sharp frequency peak. As shown in �gure 4, the re-recorded

2https://github.com/berndporr/kiss-�t

pilot tone now covers a total of 9 FFT bins before dropping to at

least -50 dB below the peak. Based on this result and the FFT pa-

rameters, we calculate a bandwidth of 9 bins * 11.72 Hz = 105.5

Hz and therefore a minimum detectable frequency shift of 52.8 Hz.

Referring back to equation 2, we can now calculate the minimum

detectable speed di�erence as ΔE = 0.44 m/s, which is well below

the average walking speed of 1.4 m/s [8]. As we are only interested

in detecting objects which exhibit relative motion towards the user,

we only need to look for signals shifted to higher frequencies and

can ignore any signals at frequencies which are lower than the pilot

tone.

5 IMPLEMENTATION

From our previous experiments, we concluded that our approach

is indeed feasible, and therefore proceeded to develop an Android

app for further testing and �eld experiments. To collect data about

the noise �oor, we �rst recorded 140 samples of FFT windows from

four devices (Moto E, ZTE Axon, Nexus 5, LG Q6) in static indoor

environments. For each individual FFTwindow, we then determined

the ratio between the pilot tone amplitude in the center frequency

bin and any higher-frequency local maxima, i.e. potential collision

indicators.

Figure 5: Signal-to-noise ratio between pilot tone amplitude

and higher-frequency local maxima (stationary device).

As illustrated in Figure 5, the low-cost Motorola device has a

relatively high noise �oor, with higher-frequency local maxima

that consistently reach about 55% of the pilot tone’s amplitude. On

the other hand, the mid-range and high-end devices have at most

between 15% and 30% of noise �oor. We, therefore, selected the LG

Q6 for further experimentation, as it provided the lowest average

signal-to-noise ratio.

However, a second test with 160 samples recorded during device

usage while walking around in an open area (�gure 6) showed that

motion in the immediate environment of the device (e.g. the users’

�ngers) will raise the noise �oor considerably, and also increase its

randomness.

Based on these results, we implemented an initial calibration

stage for our app, in which the user is asked to walk around in
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Figure 6: Signal-to-noise ratio between pilot tone amplitude

and higher-frequency local maxima (walking around).

an open area and touch a series of random targets on the screen

for 30 seconds (to simulate typical usage patterns). During this

period, the pilot tone is emitted and the recorded data analyzed to

determine the noise �oor, which is then subsequently used as a base

for setting the warning threshold. We use Tukey’s upper fence (k =

3) of the local maxima collected during the calibration stage, and

multiply the result with an empirically-determined factor of 1.35 to

calculate the �nal threshold. This factor was determined based on

a series of indoor and outdoor tests in which a person carrying the

smartphone walked towards various obstacles (wall, other persons)

while the device emitted the pilot tone and simultaneously recorded

the re�ected signal.

Once the threshold has been determined, the app will run in the

background and continuously play the pilot tone while analyzing

the recorded data. We currently do not have exact data on power

consumption, but we assume a CPU utilization of roughly 30% on

mid-range devices and therefore a corresponding runtime reduction

by about 1/3rd. The sound playback and recording itself does not

have a noticeable impact on battery lifetime.

If an FFT window shows a peak higher than the pilot tone’s

frequency which is a) above the pilot tone band and b) has a mag-

nitude higher than the threshold for this speci�c frequency bin,

a noti�cation as shown in �gure 7 is displayed. We intentionally

kept the interface very simple and limited to a noti�cation popup to

immediately catch the users’ attention, regardless of the foreground

app currently in use. Users also have the option to give immediate

feedback on whether the warning was a true or a false positive.

To reduce the latter, the collision detection is disabled when the

device’s distance sensor registers an object in close proximity, e.g.

the user’s head during a phone call or the inside of a pocket or

purse.

6 EVALUATION

We conducted an evaluation in an urban environment around the

local university with 5 participants who walked along a prede�ned

path with various obstacles (sculptures, doors, walls, pedestrians,

passing tra�c) to gain a realistic overview of the capabilities of

our system. We used the LG Q6 for this test, as it provided the best

Figure 7: Collision warning popup.

overall ultrasound audio characteristics as described previously.

Participants were provided with a news app and asked to read news

articles during the test to simulate common usage patterns. An

observer shadowed the participants during their walk and recorded

all noteworthy events, but took care to keep a distance of at least

3 meters at all times (except for obstacle 3, where the observer

intentionally simulated a pedestrian passing by the user at close

range).

The evaluation path is shown in �gure 12 and includes the fol-

lowing obstacles: (1) large wooden chair sculpture, (2) passing bus,

(3) walking person (observer), (4) building entrance/exit doors, (5)

brick wall, (6) outer wall of sculpture. See also �gure 8 for a visual

impression of the individual obstacles. In all cases, we asked partici-

pants to pass by the obstacles at a distance of at most 50 cm, ideally

without slowing down (except for the doors, which participants

had to open manually).

Figure 8: Obstacles 1 (left) to 6 (right) on evaluation path.

7 RESULTS

For our 5 participants and 6 planned obstacles, we expected a to-

tal of 30 collision warnings. Of these, 23 collisions (76.7%) were

detected correctly, as opposed to 7 false negatives. Some of the

obstacles such as the leg of the giant chair sculpture are apparently

more di�cult to detect (only for 2 out of 5 participants), likely due

to smaller total cross-section. For the passing bus, we noticed that

the two participants which did not receive a warning stood farther

away from the curb than the others, so the combination of object

speed, ambient noise, and distance is close to the detection limit in

this case (at a speed of approximately 35 km/h, the bus will only be

on approach within the 3 m detection range for about 0.3 seconds,

corresponding to at most 2-3 FFT windows that can reliably be

expected to detect a re�ection at all). For the four other obstacles,
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Figure 9: Expected and unexpected warnings per user. Ex-

pected warnings correspond to the 6 planned obstacles, un-

expected warnings are both false positives and unplanned

true positives (see text).

only two collisions in total were not detected.

When looking at the individual number of warnings for each

test participant (�gure 9), it is apparent that a) the total number

of warnings is di�erent for each user, and b) that those users that

received less warnings in total also received less true positives. At

the moment, we can only speculate about the factors in�uencing

this di�erence; it is likely to depend on a combination of individual

posture and way of holding the mobile as well as clothing worn by

the user (e.g. a thick coat will re�ect less sound energy, particularly

if the speaker on the mobile device is oriented towards the user).

While the total number of 81 unexpected warnings may appear

unacceptably high at �rst glance, the picture changes if we take our

observations of the environment during the evaluation into account.

In 38.3% of cases, random pedestrians passed the test persons at

the moment of the alert and in 16.0% of cases, cars on the road

triggered awarning. 9.9% and 3.7% of warnings were triggeredwhen

approaching walls or poles, respectively, and 18.5% of unexpected

warnings happened while passing through the building (obstacle

4). This leaves us with 13.6% of instances where an unexpected

warning happened without any recognizable external trigger; these

are the false positives which can only bemitigated by improvements

of the signal processing.

8 IMPROVED SIGNAL PROCESSING

The main limitation of our system is the high number of false posi-

tives, even if taking external triggers into account. In our evaluation,

13.6% of warnings could not be assigned to a category and were

triggered spuriously, which would likely desensitize users to the

warnings over the long term. One possible reason may be the con-

tinuously emitted pilot tone, which can easily cause short-term

re�ections that trigger a warning, even if the signal already van-

ishes again after 1-2 consecutive FFT frames.

To mitigate the high number of spurious warnings, we imple-

mented a second variant of our system which uses a modi�ed

approach to collision detection. Instead of a continuous ultrasound

signal, we now emit short "chirps" of 50 ms duration as illustrated in

�gure 10, with pauses of approximately 150 ms in-between signals.

Figure 10: Pulse shape of ultrasound chirp (frequency not to

scale).

Every chirp has a ramp-up and ramp-down phase of 10 ms duration

each to avoid audible clicking noise as a side e�ect of signals starting

or stopping at full volume. Other ultrasound sensing applications

using commodity hardware, such as e.g. [6] by Jin et al., have used

a similar approach. We do not expect any impact on power con-

sumption, as the sound playback itself only has negligible in�uence

when compared to the CPU load from the continuously-running

FFT.

In addition, we also shift the base frequency of every chirp ran-

domly within a prede�ned range between 19.5 and 20.5 kHz in

steps of 200 Hz, and use the known base frequency of the recorded

chirp to only check for re�ections within a narrower band directly

above the pilot tone frequency, similar to the "frequency hopping

spread spectrum" (FHSS) method used in various radio transmission

standards such as Bluetooth. We select this approach to mitigate

potential signal collisions between devices in the vicinity that also

emit ultrasound, e.g. car parking sensors.

Figure 11: Spectrum plot of ultrasound chirps with simulated

collision at 6.0 s.

In �gure 11, a spectrum plot of a sample run recorded with our

previously used external audio equipment (Behringer UMC404 +

Audix TM-1 at 192 kHz sample rate and 16 bit resolution) is shown.

Each frequency-shifted chirp is clearly visible. At 6.0 seconds in this

recording, we simulated a collision by approaching the setup with

a solid object (cardboard box, 15x20 cm). As expected, the chirp

at 6.0 seconds shows an additional Doppler-shifted frequency line

above the base frequency.

As the shape of each re-recorded chirp in the frequency domain

is quite consistent (similar to a Gaussian distribution, see also �g-

ure 4), we can now use a template-matching approach to detect

imminent collisions. Based on the known center frequency of each

recorded chirp, we calculate an exponential running average for the
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25 frequency bins on each side of the base frequency and subtract

this signal template from the individual chirp signal. We then calcu-

late the new center frequency of the chirp based on the di�erence

values. If no Doppler shift has occurred, then the center frequency

of the di�erence will be very close to the original base frequency;

otherwise, it will shift to higher frequencies. If a shift above one

standard deviation is detected in at least two consecutive chirps,

we trigger a warning just like in the �rst prototype.

9 DISCUSSION & FUTUREWORK

When in use, our system will inevitably contribute to an increased

ultrasound noise �oor that might a�ect the environment, partic-

ularly animals. However, bats usually employ noticeably higher

ultrasound frequencies in the 20-60 kHz range [3], so our system

operates at the very low end of their hearing range and is therefore

unlikely to have a large impact. We assume that other ultrasound-

sensitive animals such as dogs are already used to similar signals in

an urban environment, e.g. from car distance sensors, and therefore

unlikely to be a�ected either.

One limitation of our setup is that the threshold multiplier of

1.35 has been empirically determined, but not in a strictly controlled

environment and with a "convenience sample" of devices. This also

applies to the evaluation, which contained various random encoun-

ters and unpredictable environmental conditions. Changes to any

parameters might require a modi�ed value for the multiplier; how-

ever, we assume that our automated running average calibration

used in the improved implementation (cf. section 8) will address

this issue.

Another notable limitation of our system is that HeadsUp will

not work when the user is wearing headphones, as the default audio

playback will then route the ultrasound output to the headphones,

too. On some Android devices, it is possible to explicitly select the

external speaker for a speci�c audio stream, however, this feature

is hardware- and implementation-dependent. Moreover, HeadsUp

is only able to warn about objects with a certain minimum cross-

sectional area and will fail to detect e.g. a fence as the one near

obstacle 3. In addition, if a system like HeadsUp were to gain wider

traction, then the signals from other devices in the vicinity could

potentially also trigger additional false positives, even if both de-

vices employ random frequency hopping.

We see several options to mitigate these issues through future

improvements of our system. To reduce the number of spurious

warnings created in indoor environments, a straightforward ap-

proachwould be to use GPS to only activate HeadsUpwhenwalking

outside. In addition, we will perform an additional in-the-wild eval-

uation of our improved signal processing approach. We will also

investigate whether it is feasible to train a 1D convolutional neural

network (CNN) using the data collected in the �rst and second test

run to perform more accurate collision recognition and whether

a frequency-modulated continuous wave (FMCW) approach (usu-

ally used for range detection) might also be suitable for our usage

scenario. A future larger-scale deployment would also require a

more elaborate user interface that allows to set parameters such as

expected walking speed, audio routing, warning threshold, etc.

10 CONCLUSION

We have presented HeadsUp, a mobile collision warning system

using unmodi�ed commodity smartphones. HeadsUp emits ultra-

sound signals and simultaneously listens for Doppler-shifted re-

�ections of these signals that indicate an approaching object, dis-

playing a warning to the user who may be distracted by using

their smartphone. To assess the feasibility of our approach, we �rst

characterized the ultrasound playback and recording capabilities of

six di�erent smartphone models. In our real-world study, HeadsUp

detected 76.7% of expected collisions (23 out of 30 staged situations).

In addition, our system also produced 81 additional warnings in

total, of which 13.6% could not be linked to any external trigger. To

reduce spurious warnings, we implemented a frequency-hopping

approach with pulsed ultrasound chirps. In the future, we will inves-

tigate whether the updated signal processing improves real-world

results and whether a neural network or a FMCW-based approach

can be used to further augment our system.

11 REPRODUCTION NOTE

All data and source code for this paper is available at Github via

https://github.com/mmbuw/headsup.
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