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S E N S O R  N E T W O R K S

Automatic Con�guration 
of Pervasive Sensor 
Networks for 
Augmented Reality

M
ost virtual reality (VR) and 

augmented reality (AR) 

systems are constrained to 

laboratories by the limited 

range of a single, expensive 

six degrees of freedom (6DOF) tracking system. 

Diverse low-cost electronics and sensors deployed 

in a ubiquitous manner could allow AR applica-

tions to cast off their shackles and roam through-

out much larger environments. Ultimately, we 

can best realize this goal, not by extending the 

range of a single tracker, but by dynamically 

and automatically incorporat-

ing the heterogeneous sensors 

we anticipate will pervade the 

environment in the future.

AR and VR applications  

require a high update rate and 

low latency, so communicating 

tracking information requires 

a fast, highly optimized system 

with a direct network connec-

tion from sources of tracking 

data (sensors) to sinks (appli-

cations). In contrast, informa-

tion involving the availability 

of sensors, objects, and users, and the associated 

topological considerations (for example, where 

the user is or which source should be connected 

to which sink) occurs at much lower frequencies 

but requires the oversight of a complex problem 

domain potentially involving numerous entities.

In general terms, a middleware architecture 

for location sensing in distributed and heteroge-

neous environments should support several key 

requirements:

•	 device abstraction enabling portability of ap-

plications between families of similar devices; 

•	 network transparency allowing access to de-

vice data independent of the device’s physical 

connection;

•	 �exible processing of data from multiple de-

vices delivered in a form that the application 

can use (for example by �ltering, fusion, cali-

bration, or registration);

•	 architectural support for established trans-

formation, sensor fusion, and calibration 

algorithms;

•	 ef�cient processing and transport of tracking 

data for time-critical AR applications; and

•	 dynamic recon�guration of the sensor data 

�ow.

In AR and VR applications, data�ow networks 

have proven useful for ef�cient device abstraction  

The ubiquitous tracking (Ubitrack) approach uses spatial relationship 

graphs and patterns to support a distributed software architecture for 

augmented reality (AR) systems in which clients can produce, transform, 

transmit, and consume tracking data.
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and network transparency (see the  

“Related Work in Ubiquitous Tracking”  

sidebar). However, to deliver a continu-

ous stream of tracking data, these net-

works must be manually con�gured for 

every tracking situation.

The ubiquitous computing (ubicomp) 

community has developed several ap-

proaches that incorporate dynamic and 

heterogeneous wide-area sensor net-

works (see the sidebar). However, these 

approaches primarily consider low-fre-

quency data. Our Ubiquitous Tracking 

(Ubitrack) system combines the perfor-

mance advantage of AR and VR data-

�ow networks with the �exibility and 

more sophisticated reasoning typically 

found in ubicomp systems to support 

distributed access to an array of sensing 

technologies.

System Overview
We propose a two-layered approach to 

distributed tracking for AR/VR appli-

cations: a con�guration layer, respon-

sible for low-frequency events, sets up 

the runtime layer, which handles the 

high-frequency events. The con�gura-

tion layer stores structural information 

concerning the physical environment 

and technical infrastructure in a spa-

tial relationship graph (SRG) and mines 

it for the con�guration information the 

runtime layer needs. The runtime layer 

polls the sensors and transforms, fuses, 

and delivers the sensor data through a 

distributed data�ow network.

Figure 1 shows the architecture’s  

basic components and the most relevant 

communication channels. The design’s 

core idea is to separate the con�gura-

tion of data producers and consumers 

from the actual production and con-

sumption of sensor data. This separa-

tion permits the relatively resource- 

intensive coordination process to run on 

the server, while clients communicate 

directly with one another according to 

the low-latency requirements of AR ap-

plications. For performance reasons, 

this approach uses a centrally coordi-

nated peer-to-peer architecture rather 

than a pure client-server solution.

Ubitrack Server

The Ubitrack server is the system’s cen-

tral component, maintaining a data-

base of all coordinate frames, sensors,  

and tracked objects as an SRG. The 

SRG, although initially empty, con-

tains the aggregated spatial relation-

ships specified by clients and thus 

contains complete knowledge of the 

tracking infrastructure’s topology. It 

doesn’t, however, contain actual sen-

sor measurements.

Clients can query the server about 

parts of the SRG, including spatial rela-

tionships that can’t be measured directly 

but can only be inferred using spatial  

relationship patterns.1 The server con-

tinuously matches the SRG against reg-

istered client queries. If it �nds a match, 

it generates a data-�ow network de-

scription, which it sends to the client. 

During this process, the server can also 

order a client to construct a data�ow 

network in support of other clients by 

processing tracking data and transmit-

ting them over the network.

Ubitrack Client

Ubitrack system clients can be sen-

sors, output devices, and other human- 

computer interaction components as 

well as mixed forms, such as software 

agents representing virtual characters 

Figure 1. Ubitrack architecture overview. The Ubitrack server coordinates clients that directly exchange sensor data with low 

latency and apply transformation, calibration, and sensor fusion algorithms as instructed by the server.
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that both react to the environment and 

provide information about their loca-

tion in space. 

To keep the interface for application 

programmers minimal, the client-

side network communication is en-

capsulated in the Ubitrack client 

library. It supports interaction with 

the Ubitrack system at various degrees 

of complexity, ranging from simple 

“Where is object A?” queries to persistent 

requests for tracking data of all objects 

matching a given predicate with the 

additional specification of desired 

tracking quality and base coordinate  

frames.

Application

A developer writes an application con-

forming to interfaces in the Ubitrack 

client library. Using this interface, the 

application becomes part of the data-

�ow network. The application retrieves 

information using callback nodes in the 

data �ow and can pass information into 

the data �ow using call-forward nodes.

Data�ow Network 

The data�ow network is formed by 

jointly executed processes run by the cli-

ents. It retrieves, processes, transmits, 

and delivers the actual sensor data.  

The data flow’s reconfiguration is  

triggered by the Ubitrack server, but it’s 

interpreted and executed by the Ubi-

track client library.

Spatial Relationship Graphs
To enable the automated analysis and 

synthesis of complex tracking scena-

rios, a formal description of the situation  

is necessary. Inspired by the informal 

coordinate frame drawings frequently 

found in robotics papers (such as that by 

R.Y. Tsai and R.K. Lenz2), we proposed 

the use of SRGs.3 The graph’s nodes 

represent the coordinate frames of real 

or virtual objects, whereas the directed 

edges represent the spatial relationships 

T he Ubitrack approach incorporates results from several 

research areas.

Augmented and Virtual Reality
Distributed VR applications have traditionally relied on  

application-level rather than device-level distribution of events, 

for example, through distributed scene graphs.1,2 This might 

have been a more straightforward solution for connecting dis-

tributed VR sites with static physical con�guration, but it doesn’t 

address the need for dynamic recon�guration at runtime.

AR applications, especially those for mobile users, require 

coverage of larger physical areas as well as greater �exibility in 

the type of supported devices. Speci�cally, fusion of hetero-

geneous sensors is used both to improve tracking quality and 

cover larger areas.3 Gudrun Klinker and her colleagues �rst 

postulated distributed tracking concepts necessary to propel 

AR beyond the con�nes of the laboratory into serious industrial 

settings.4

In AR and VR applications, data�ow networks processing high-

frequency streams of sensor data have proven to be a useful ap-

proach for device abstraction. Two prominent examples are the 

Virtual Reality Peripheral Network (VRPN) 5 and OpenTracker.6 

The Ubitrack framework automatically computes suitable data-

�ow graphs given an abstract semantic representation of the 

world in form of an spatial relationship graph (SRG).

In recent years, researchers have made signi�cant progress in 

the development of optical natural feature-based self-localization 

systems,7 which don’t rely on technical infrastructure. Therefore, 

the use of middleware might seem unnecessary for such systems. 

However, to realize a meaningful pervasive AR application, com-

mon coordinate frames must be established and positions of  

objects and features exchanged. In addition, access to other  

sensors can improve robustness and accuracy.

Ubiquitous Computing
The use of heterogeneous sensors and context-aware computing 

is much more common in the ubicomp area than in AR. Several 

ubicomp systems deal with wide-area sensor networks and fed-

erated sensor data models, such as Nexus,8 QoSDream,9 and the 

context toolkit.10 However, these approaches primarily consider 

low-bandwidth communication. Therefore, they aren’t directly 

applicable to AR’s real-time and low-latency requirements.

Location models for ubicomp are frequently described in 

terms of Hightower’s location stack.11 The Ubitrack system 

mostly covers the functionality of the measurement, fusion, and 

arrangement layers. However, because we separate con�gura-

tion and runtime layers, a straightforward mapping of individual 

Ubitrack components onto the location stack layers is impossible. 

The EasyLiving Geometric Model used graph models to repre-

sent different coordinate systems.12 However, because it used un-

directed (rather than directed) graph edges and a simple graph 

search (rather than spatial relationship patterns), this approach is 

less powerful than the Ubitrack framework.

Computer Vision and Robotics
The SRG concept was heavily inspired by the informal coordinate 

frame drawings frequently found in robotics papers.13 Further-

more, robotics has developed a rich collection of algorithms for 

alignment and fusion in multisensor systems. Our development 

of the spatial relationship pattern framework was driven by the 

desire to make these algorithms available to mobile AR and VR 

setups, which our �rst Ubitrack system didn’t support.

Related Work in Ubiquitous Tracking
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between these objects. Thus, in the case 

of two 3D coordinate frames, an edge 

might describe a transformation with 

6DOF, three for position and three for 

orientation. This is the most common 

case for AR tracking setups, although 

other edge types are equally important. 

The graph contains a separate edge for 

each relationship. It can thus contain 

multiple edges between the same pair of 

nodes—for example, if multiple inde-

pendent trackers are tracking the same 

objects. Furthermore, both nodes and 

edges have a set of attributes describing  

important characteristics, such as an 

object’s name or the measurement data 

type of an edge (6DOF pose, 3D posi-

tion, and so on).

Although the SRG describes the 

layout of a tracking environment in  

detail, an application doesn’t immedi-

ately bene�t from access to the SRG. 

The application needs the relevant data 

from the sensors rather than data de-

scribing the sensors. To obtain this 

data, the Ubitrack server provides the 

application with an abstract data�ow 

graph (DFG), which the application 

instantiates into a concrete data�ow 

network. The DFG is a directed graph 

with nodes representing computa-

tional units (such as matrix inversion or  

multiplication) and edges representing 

the �ow of tracking data through this 

graph. Sources in a DFG generally rep-

resent sources of tracking data, whereas 

sinks mostly correspond to interfaces to 

other parts of the application. 

Spatial Relationship Patterns

We use spatial relationship patterns to 

infer suitable DFGs from an SRG repre-

sentation. A spatial relationship pattern 

identi�es parts of the overall SRG for 

which a known algorithm exists. The 

corresponding dataflow component 

executes the algorithm and provides 

the result, again as an edge in the SRG.  

Semantic Web and Graph Rewriting
An interesting approach to the inference of context from sen-

sor data is the use of Semantic Web technologies (ontologies), 

such as in the Cobra project.14 This kind of system description 

has some similarities to our SRG approach in that ontologies can 

evaluate complex relationships between entities.

In the model-driven engineering �eld, researchers have in-

vestigated the automatic analysis of model diagrams. This has 

resulted in graph transformation systems, such as Progres,15 

which are used to transform, simulate, and verify UML models 

and similar diagrams. Although the graph transformation rules 

used there are more complex than spatial relationship pat-

terns, our system implementation pro�ts from the results of this 

research.
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We apply this technique recursively to 

further identify solvable subproblems 

until a solution for all required data-

�ow elements is found.

Such patterns de�ne the signature 

of an algorithm for solving a speci�c 

problem in a tracking setup. These  

algorithms have as input a set of mea-

surement edges, de�ned by the prob-

lem, and return a set of measurement 

edges that is part of the solution. Spatial 

relationship patterns don’t merely de-

�ne the type of arguments and return 

values; they also impose restrictions 

on the geometric relationship between 

them. Hence, a pattern has two types of 

edges: input edges required in the SRG 

before a pattern can be applied (drawn 

as solid lines) and output edges added 

by a pattern (drawn as dashed lines). In-

puts edges can be further restricted by 

specifying predicates over the attributes 

of the SRG edges.

Figure 2 shows the two basic spatial 

relationship patterns, which suf�ciently 

describe many runtime setups (after 

calibration). The basic patterns create 

an SRG’s transitive re�exive closure:

•	 Inversion. Edges in an SRG are di-

rected and can be inverted, depending  

on their type. If the transformation is 

represented by a matrix, this simply 

gives the inverse matrix.

•	Concatenation. The most common 

way to compute the transformation 

on an unknown edge is by concatena-

tion of subsequent edges, that is, by 

multiplying the transformations.

Consider a simple lab-based AR ap-

plication where a single high-precision 

tracker tracks both a mobile display 

and a tangible object to be augmented 

(Figures 2c and 2d). In this case, an in-

version pattern (Figure 2e) would be 

used to change the reference coordinate 

frame from the tracker to the display, 

followed by a concatenation (Figure 2f) 

that computes the object’s location rela-

tive to the display. (You can �nd more 

complex patterns that describe sensor 

fusion and calibration methods from 

robotics and computer vision in earlier 

research.1)

Sensor Synchronization

Most algorithms with multiple input 

edges, such as concatenation, require 

that measurements on all their inputs 

are synchronized to produce correct 

results. Our system ensures this by  

choosing one sensor as the time re-

ference. The system synchronizes the  

measurements of other sensors by in-

serting interpolation components that 

compute results for the reference sen-

sor’s time stamps.

In the pattern framework, we attri-

bute edges with the type of interface 

that’s used for communication. Push 

edges provide measurements whenever 

they’re available, whereas pull edges 

can be queried for a given time stamp. 

For correct synchronization, a pattern 

can have at most one push input that 

provides the reference timing. When 

combining multiple push sensors, the 

other inputs must be converted from 

push to pull by inserting an interpola-

tion pattern.

Figure 3 shows the different vari-

ations of the concatenation pattern re-

sulting from this push-pull expansion, 

together with the interpolation pattern. 

Using Patterns to Create  
Data�ow Networks
The procedure that results in a data-

flow network suitable for an appli-

cation client’s needs can roughly be  

divided into several steps.

Client Request

The protocol we used to exchange in-

formation between servers and clients is 

Figure 2. The basic spatial relationship patterns (a) inversion and (b) concatenation form the re�ective and transitive closure of 

a spatial relationship graph, as shown in the examples: (c) example scenario, (d) spatial relationship graph (SRG), (e) inversion 

application, and (f) concatenation application.
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an XML dialect called Ubitrack Query 

Language (UTQL). The client starts the 

communication by sending a request to 

the server, which contains descriptions 

of sensors, processing capabilities, and 

queries for particular spatial relation-

ships. All this is expressed in the form 

of spatial relationship patterns, which 

have only outputs (sensors), only inputs 

(queries), or both (processing patterns).

Depending on the kind of patterns 

transmitted, we can distinguish be-

tween sensor, application, and process-

ing clients. However, mixed forms are 

also frequent, such as the mobile setup 

presented later. Because each client can 

transmit a different set of patterns, the 

system supports clients with different 

processing capabilities. Clients can add 

or remove patterns from the server at 

any time, which triggers a recomputa-

tion of the DFG.

Pattern Application

The server �rst creates an initial SRG by 

adding all the clients’ sensor patterns. 

On this SRG, it systematically applies 

processing patterns until solutions to all 

requests are found (or the search fails). 

This search for patterns can be split into 

a detection and control problem. Detec-

tion of all instances of a given pattern 

(subgraph isomorphism) is NP-complete 

in the general case, but we can apply 

some simple heuristics and cut-off crite-

ria to quickly yield the relevant results. 

For example, new edges are only added 

if they don’t provide the same informa-

tion as existing edges, only derived in a 

different order. The control mechanism 

is bootstrapped by the detection and 

aims to apply patterns systematically 

toward a given goal (a client’s request). 

The currently implemented strategies 

are simple and apply a combination of 

known relevant patterns.

Data�ow Construction

Constructing the DFG from a sequence 

of located pattern instances is straight-

forward. All edges in the initial SRG 

are associated with a tracking compo-

nent or some other service (such as a 

database) in the DFG that provides the 

initially unprocessed measurements. 

Whenever a pattern is applied to the 

SRG, it creates a new algorithmic com-

ponent in the DFG. This component 

provides new outputs, which are asso-

ciated with the new SRG edges, while 

the component’s inputs are connected 

to the components associated with the 

input edges of the patterns. This is re-

peated for all pattern applications until 

the desired measurement is available at 

the end of the DFG.

To support network transport of 

measurements with minimal latency, 

the tracking data must be sent directly 

from one client to another. Therefore, 

the server splits a global data�ow de-

scription into client-speci�c parts and 

integrates network sources and sinks. 

This results in distributed DFGs where 

several clients collaborate to satisfy a 

speci�c client’s request.

Data�ow Instantiation

When the server has computed a suit-

able DFG in response to a client’s query, 

it sends UTQL messages to one or more 

clients, requesting that they instanti-

ate and connect the required data�ow 

components corresponding to the ap-

plied patterns. 

Dynamic Recon�guration  
at Runtime
The methods we’ve described provide 

the necessary formal framework to  

derive optimal dataflow configura-

tions for AR applications, given a 

particular sensor con�guration. For  

con�guring static sensor arrangements, 

this can help in setting up an AR system 

because specifying an SRG is easier and 

less error-prone than manually con�g-

uring a data�ow con�guration. Using 

a graphical SRG editor,4 members of 

our group implemented complex multi-

sensor calibration tasks within a few 

minutes.

In a ubicomp scenario where mobile 

systems move between tracking areas 

covered by different sensors, mecha-

nisms are necessary to reconfigure 

the SRG based on sensor availability 

or region containment. These recon-

�gurations are generally triggered by 

analysis of the actual sensor data. As 

in our framework, the server coordi-

nates the clients, but it doesn’t receive 

actual tracking data. Such function-

ality must be implemented by special  

clients.

Transition Between Locales

To ensure system scalability, we limit 

queries for available objects, such as 

persons, sensors, or �ducials, to a rea-

sonable area of interest, a locale. In 

the SRG formalism, we treat locales as 

nodes. Containment in a locale is ex-

pressed as an edge of type inLocale, which 

is drawn from the locale node to the ob-

ject in question. This lets us model que-

ries for objects as spatial relationship  

Figure 3. Pattern extensions for sensor synchronization: (a) push-pull, (b) pull-push, 

(c) pull, and (d) interpolation. Push inputs provide the time reference to which the 

pull inputs are synchronized. Push edges can be converted to pull by instantiating an 

interpolation pattern.
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patterns. In the following example, 

we look for objects of type marker that 

are contained in the same locale as the  

camera1 node, shown in Figure 4.

Using this formalism, an object can 

be in multiple locales simultaneously, 

and there’s no need for a hierarchical re-

lationship between locales. In addition, 

locales need not necessarily correspond 

to physical entities, such as rooms, but 

they could also express abstract con-

cepts such as a social network.

A dedicated locale manager adds the 

locale edges at runtime. In our system, 

we implemented a general-purpose lo-

cale manager that can be con�gured 

using XML to listen for events from a 

particular sensor and insert or remove 

locale edges when an object enters or 

leaves a particular locale, or when a 

sensor starts to deliver data about an 

object at all. Locales are de�ned by the 

convex hull of a set of points. Each lo-

cale has a separate manager to enhance 

scalability.

Unlike the sensors used for AR visu-

alization and interaction, sensors that 

are monitored to detect locale contain-

ment don’t need to be extremely precise. 

Therefore, we can use relatively cheap 

technology, such as Wi-Fi or RFID po-

sitioning, for this purpose.

Identity Pattern for  

Assigning Anonymous Sensors

Most sensors typically used in AR set-

ups can uniquely identify the objects 

they’re tracking. Other (cheap) sensors 

don’t offer this feature, such as a sur-

veillance camera combined with a sim-

ple blob-detection algorithm. In terms 

of the SRG, we model these objects as 

nodes with a special anonymous attri-

bute and a temporary ID, assigned by 

the anonymous sensor client. In a situ-

ation where an ID-sensing tracker de-

tects one of the objects with suf�cient 

accuracy, the system can conclude that 

the two objects actually are the same 

by comparing the positions of both 

sensors. In this situation, the ID sen-

sor doesn’t need to provide continuous 

measurements, but a single event, such 

as the read-out of an RFID tag or the 

detection of a marker in a single camera 

image, is suf�cient. In the Ubitrack for-

malism, we model this object merging 

by inserting symmetric identity edges 

between the two nodes in the SRG. 

The meaning of an identity edge is that 

each measurement of one object is valid 

for the other object as well. The mea-

surement identity pattern, shown in  

Figure 5, expresses this in the Ubitrack 

formalism.

The actual insertion of identity edges 

is done by a general-purpose identity 

manager, which is con�gured and in-

stantiated for each anonymous sensor. 

This manager queries the Ubitrack sys-

tem for all anonymous objects of the 

given tracker and a list of candidate 

objects, usually limited to a particular 

locale or type (for example, person). By 

comparing the positions of both anony-

mous and candidate objects, the man-

ager can detect matching objects and 

insert identity edges, which lets the sys-

tem use the anonymous sensor until it 

loses track of the object.

Dynamic Sensor  
Fusion Example
To illustrate Ubitrack’s capabilities, we 

describe an example involving dynamic 

fusion of multiple sensors for present-

ing AR objects to a mobile user. The 

user is guided through the hallway to a 

lab, where a virtual sheep is pastured. 

The mobile AR system collaborates 

with several stationary tracking devices 

installed in the environment. Figure 6a 

shows a map of the environment. 

The user carries a tablet PC with  

integrated camera and an inertial mea-

surement unit (IMU) with compass (Inter-

sense InertiaCube), shown in Figure 6b.  

The camera image provides a video see-

through AR view on the screen. The 

camera also detects black-and-white 

�ducial markers and determines their 

pose relative to the camera. For higher 

robustness and accuracy, the results are 

fused with the IMU using a Kalman �l-

ter. The client PC retrieves set of avail-

able markers from the Ubitrack server, 

depending on the current locale.

The mobile user enters the hallway 

in front of the lab. Using the camera, 

the user can track a �ducial marker at 

the hallway entrance. As the user looks 

at the marker, the system registers the 

user’s position.

On the hallway ceiling, an overhead 

tracker with a wide-angle camera de-

tects and tracks people. This overhead 

tracker adds newly detected people as 

anonymous objects to the SRG. How-

ever, the identity manager can identify 

one of them as the user by comparing 

positions reported by the overhead 

camera and the marker tracker.

As the user turns (measured by the 

IMU) and looks down the hallway,  he 

or she can see a sign in front of the lab 

Figure 4. Query pattern resulting in all 

objects of type marker that are contained 

in the same locale as the camera1 node.

L

M

type:
inLocale

C

type:
inLocale

id:camera1 type:marker

C

B

type:
3D Pos

type:
identity

A

type:
3D Pos

Figure 5. The Measurement identity 

pattern for 3D Pos measurements. It  

can be read as, “measurements of type 

3D Pos valid for any object A are also valid 

for any other object B connected  

to A via an identity edge.” 
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door. Walking down the hallway, the 

user stays tracked by the overhead cam-

era. In front of the lab door, another 

marker lets the user take a look at the 

sign with higher accuracy.

The lab is covered by a commer-

cial Ubisense ultra-wideband (UWB) 

RF location system, providing po-

sition updates with an accuracy of  

approximately 15 centimeters. A UWB-

emitting tag is attached to the mobile 

setup, allowing the PC to be detected 

and uniquely identified. In the cen-

ter of the lab, a working volume of  

approximately 4 × 4 meters is covered 

by a high-precision A.R.T. infrared-

optical tracker. To be tracked by this 

system, the mobile setup includes a set 

of retro-re�ective marker balls.

When the user enters the lab, 

the UWB-emitting tag is detected.  

Figure 6. Illustration of the example scenario: (a) a map of the environment, showing the positions of markers, the overhead tracker 

and ultra-wideband and infrared-optical tracking systems, (b) the handheld PC with an integrated camera, inertial measurement 

unit (IMU), ultra-wideband emitter (UWB) and infrared-optical tracking target and (c) the spatial relationship graph (SRG) of the 

setup. (Note: For clarity, this SRG only contains sensor and query edges. Also, we show only the “type” attribute.) 
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Using the tag data and the compass, 

the system determines the user’s pose, 

and the user can see the virtual sheep 

on the table. As the user approaches 

the table, he or she enters the tracking 

area of the high-performance infrared 

tracking system (detected by the UWB 

tracker), which automatically connects 

to the mobile setup.

Figure 6c shows the SRG of the setup. 

The edges connecting the mobile setup 

and the hallway or lab might be unavail-

able, depending on the user’s locale.

The software system used in the sce-

nario consists of a Ubitrack server and 

a set of clients, which together provide 

the information for the SRG and dy-

namically add or remove information 

derived from the tracking context. For 

the static parts of the hallway and lab, 

two world clients add the relationships 

between the different stationary track-

ing systems and the rooms to the global 

SRG. These clients also add the virtual 

object nodes, which contain the URL 

of associated 3D models for rendering. 

The mobile client sends the SRG de-

scribing the mobile setup to the server 

at startup. The setup includes a camera, 

IMU, UWB emitter, and infrared target 

as well as the calibrated relationships 

between them. Because the mobile cli-

ent contains the rendering application, 

it also sends a query for the 6DOF pose 

of all renderable objects in the current 

room relative to the camera coordinate 

frame. Another query provides the 

square marker tracking with the list of 

available markers in the room.

Figure 7. Results of the example scenario. (a) One of the generated data�ow graphs and (b) some captured video frames as seen 

by the mobile AR user.
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The overhead tracking system is rep-

resented by another client that runs on 

a stationary computer. It adds detected 

people as anonymous objects with tem-

porary IDs to the server’s SRG. The 

data association between the overhead 

tracking and the mobile setup is done 

by a separate identity management 

client, which receives the positions of 

anonymous and candidate objects in 

the hallway from the Ubitrack system. 

Inside the lab, the UWB client adds 

detected UWB emitters to the SRG and 

provides their positions to the data-

�ow network. Because these emitters 

have unique IDs, they can be directly 

associated with other clients’ objects. 

Locale containment for the lab and the 

infrared tracker is handled by a locale 

manager running on a computer in  

the lab.

Figure 7 shows an example of the 

generated DFGs and some captured 

video frames from the view of the mo-

bile AR user.

O
ur system architecture  

ful�lls the exacting per-

formance requirements 

necessary for immersion 

in an AR world, while simultaneously 

extending the bounds within which 

uses can experience AR environments, 

thus bridging the divide between the 

pervasive computing and AR worlds.

Ubitrack differs in several aspects 

from current ubicomp approaches such 

as the location stack.5 In Ubitrack, 

all sensor measurements are mod-

eled as (relative) spatial relationships 

between two arbitrary coordinate 

systems. Therefore, basic coordinate 

system transformations are handled 

at the same conceptual layer as more 

advanced sensor fusion algorithms. In 

fact, transformations are necessary to 

enable fusion and not just a convenience 

function for application programmers. 

On the architectural side, Ubitrack 

maintains a strict separation between 

con�guration and runtime layers. All 

processing that involves inspection of 

measurements (such as ID assignment) 

must be done by specialized clients at 

the runtime layer that in turn recon�g-

ure the con�guration layer’s SRG.
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UTQL provides a common standard 

that lets clients describe previously 

unknown sensors and environments 

and express the relationships in which 

they are interested. Sensor data is dy-

namically fused and communicated 

to clients in a peer-to-peer fashion via 

a dataflow network. The emergent 

structure of this network depends on 

the behavior of clients implemented as 

reusable extensible and largely decen-

tralized components.
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