
68 PERVASIVE computing Published by the IEEE CS n 1536-1268/11/$26.00 © 2011 IEEE

S E N S O R N E T W O R K S

Automatic Con�guration
of Pervasive Sensor
Networks for
Augmented Reality

M
ost virtual reality (VR) and

augmented reality (AR)

systems are constrained to

laboratories by the limited

range of a single, expensive

six degrees of freedom (6DOF) tracking system.

Diverse low-cost electronics and sensors deployed

in a ubiquitous manner could allow AR applica-

tions to cast off their shackles and roam through-

out much larger environments. Ultimately, we

can best realize this goal, not by extending the

range of a single tracker, but by dynamically

and automatically incorporat-

ing the heterogeneous sensors

we anticipate will pervade the

environment in the future.

AR and VR applications

require a high update rate and

low latency, so communicating

tracking information requires

a fast, highly optimized system

with a direct network connec-

tion from sources of tracking

data (sensors) to sinks (appli-

cations). In contrast, informa-

tion involving the availability

of sensors, objects, and users, and the associated

topological considerations (for example, where

the user is or which source should be connected

to which sink) occurs at much lower frequencies

but requires the oversight of a complex problem

domain potentially involving numerous entities.

In general terms, a middleware architecture

for location sensing in distributed and heteroge-

neous environments should support several key

requirements:

•	 device abstraction enabling portability of ap-

plications between families of similar devices;

•	 network transparency allowing access to de-

vice data independent of the device’s physical

connection;

•	 �exible processing of data from multiple de-

vices delivered in a form that the application

can use (for example by �ltering, fusion, cali-

bration, or registration);

•	 architectural support for established trans-

formation, sensor fusion, and calibration

algorithms;

•	 ef�cient processing and transport of tracking

data for time-critical AR applications; and

•	 dynamic recon�guration of the sensor data

�ow.

In AR and VR applications, data�ow networks

have proven useful for ef�cient device abstraction

The ubiquitous tracking (Ubitrack) approach uses spatial relationship

graphs and patterns to support a distributed software architecture for

augmented reality (AR) systems in which clients can produce, transform,

transmit, and consume tracking data.

Daniel Pustka, Manuel Huber,

Christian Waechter,

Florian Echtler, Peter Keitler,

and Gudrun Klinker

Technical University of Munich

Joseph Newman

University of Cambridge

Dieter Schmalstieg

Graz University of Technology

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2011 PERVASIVE computing 69

and network transparency (see the

“Related Work in Ubiquitous Tracking”

sidebar). However, to deliver a continu-

ous stream of tracking data, these net-

works must be manually con�gured for

every tracking situation.

The ubiquitous computing (ubicomp)

community has developed several ap-

proaches that incorporate dynamic and

heterogeneous wide-area sensor net-

works (see the sidebar). However, these

approaches primarily consider low-fre-

quency data. Our Ubiquitous Tracking

(Ubitrack) system combines the perfor-

mance advantage of AR and VR data-

�ow networks with the �exibility and

more sophisticated reasoning typically

found in ubicomp systems to support

distributed access to an array of sensing

technologies.

System Overview
We propose a two-layered approach to

distributed tracking for AR/VR appli-

cations: a con�guration layer, respon-

sible for low-frequency events, sets up

the runtime layer, which handles the

high-frequency events. The con�gura-

tion layer stores structural information

concerning the physical environment

and technical infrastructure in a spa-

tial relationship graph (SRG) and mines

it for the con�guration information the

runtime layer needs. The runtime layer

polls the sensors and transforms, fuses,

and delivers the sensor data through a

distributed data�ow network.

Figure 1 shows the architecture’s

basic components and the most relevant

communication channels. The design’s

core idea is to separate the con�gura-

tion of data producers and consumers

from the actual production and con-

sumption of sensor data. This separa-

tion permits the relatively resource-

intensive coordination process to run on

the server, while clients communicate

directly with one another according to

the low-latency requirements of AR ap-

plications. For performance reasons,

this approach uses a centrally coordi-

nated peer-to-peer architecture rather

than a pure client-server solution.

Ubitrack Server

The Ubitrack server is the system’s cen-

tral component, maintaining a data-

base of all coordinate frames, sensors,

and tracked objects as an SRG. The

SRG, although initially empty, con-

tains the aggregated spatial relation-

ships specified by clients and thus

contains complete knowledge of the

tracking infrastructure’s topology. It

doesn’t, however, contain actual sen-

sor measurements.

Clients can query the server about

parts of the SRG, including spatial rela-

tionships that can’t be measured directly

but can only be inferred using spatial

relationship patterns.1 The server con-

tinuously matches the SRG against reg-

istered client queries. If it �nds a match,

it generates a data-�ow network de-

scription, which it sends to the client.

During this process, the server can also

order a client to construct a data�ow

network in support of other clients by

processing tracking data and transmit-

ting them over the network.

Ubitrack Client

Ubitrack system clients can be sen-

sors, output devices, and other human-

computer interaction components as

well as mixed forms, such as software

agents representing virtual characters

Figure 1. Ubitrack architecture overview. The Ubitrack server coordinates clients that directly exchange sensor data with low

latency and apply transformation, calibration, and sensor fusion algorithms as instructed by the server.

P2P
network transport

Ubitrack library Dataflow
network

Sensor client

Ubitrack library Dataflow
network

Hybrid sensor/application client

Ubitrack library Dataflow
network

Application client

Sensor

Configuration (UTQL)

Measurements

Type of exchanged data

Ubitrack server

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

70 PERVASIVE computing www.computer.org/pervasive

SENSOR NETWORKS

that both react to the environment and

provide information about their loca-

tion in space.

To keep the interface for application

programmers minimal, the client-

side network communication is en-

capsulated in the Ubitrack client

library. It supports interaction with

the Ubitrack system at various degrees

of complexity, ranging from simple

“Where is object A?” queries to persistent

requests for tracking data of all objects

matching a given predicate with the

additional specification of desired

tracking quality and base coordinate

frames.

Application

A developer writes an application con-

forming to interfaces in the Ubitrack

client library. Using this interface, the

application becomes part of the data-

�ow network. The application retrieves

information using callback nodes in the

data �ow and can pass information into

the data �ow using call-forward nodes.

Data�ow Network

The data�ow network is formed by

jointly executed processes run by the cli-

ents. It retrieves, processes, transmits,

and delivers the actual sensor data.

The data flow’s reconfiguration is

triggered by the Ubitrack server, but it’s

interpreted and executed by the Ubi-

track client library.

Spatial Relationship Graphs
To enable the automated analysis and

synthesis of complex tracking scena-

rios, a formal description of the situation

is necessary. Inspired by the informal

coordinate frame drawings frequently

found in robotics papers (such as that by

R.Y. Tsai and R.K. Lenz2), we proposed

the use of SRGs.3 The graph’s nodes

represent the coordinate frames of real

or virtual objects, whereas the directed

edges represent the spatial relationships

T he Ubitrack approach incorporates results from several

research areas.

Augmented and Virtual Reality
Distributed VR applications have traditionally relied on

application-level rather than device-level distribution of events,

for example, through distributed scene graphs.1,2 This might

have been a more straightforward solution for connecting dis-

tributed VR sites with static physical con�guration, but it doesn’t

address the need for dynamic recon�guration at runtime.

AR applications, especially those for mobile users, require

coverage of larger physical areas as well as greater �exibility in

the type of supported devices. Speci�cally, fusion of hetero-

geneous sensors is used both to improve tracking quality and

cover larger areas.3 Gudrun Klinker and her colleagues �rst

postulated distributed tracking concepts necessary to propel

AR beyond the con�nes of the laboratory into serious industrial

settings.4

In AR and VR applications, data�ow networks processing high-

frequency streams of sensor data have proven to be a useful ap-

proach for device abstraction. Two prominent examples are the

Virtual Reality Peripheral Network (VRPN) 5 and OpenTracker.6

The Ubitrack framework automatically computes suitable data-

�ow graphs given an abstract semantic representation of the

world in form of an spatial relationship graph (SRG).

In recent years, researchers have made signi�cant progress in

the development of optical natural feature-based self-localization

systems,7 which don’t rely on technical infrastructure. Therefore,

the use of middleware might seem unnecessary for such systems.

However, to realize a meaningful pervasive AR application, com-

mon coordinate frames must be established and positions of

objects and features exchanged. In addition, access to other

sensors can improve robustness and accuracy.

Ubiquitous Computing
The use of heterogeneous sensors and context-aware computing

is much more common in the ubicomp area than in AR. Several

ubicomp systems deal with wide-area sensor networks and fed-

erated sensor data models, such as Nexus,8 QoSDream,9 and the

context toolkit.10 However, these approaches primarily consider

low-bandwidth communication. Therefore, they aren’t directly

applicable to AR’s real-time and low-latency requirements.

Location models for ubicomp are frequently described in

terms of Hightower’s location stack.11 The Ubitrack system

mostly covers the functionality of the measurement, fusion, and

arrangement layers. However, because we separate con�gura-

tion and runtime layers, a straightforward mapping of individual

Ubitrack components onto the location stack layers is impossible.

The EasyLiving Geometric Model used graph models to repre-

sent different coordinate systems.12 However, because it used un-

directed (rather than directed) graph edges and a simple graph

search (rather than spatial relationship patterns), this approach is

less powerful than the Ubitrack framework.

Computer Vision and Robotics
The SRG concept was heavily inspired by the informal coordinate

frame drawings frequently found in robotics papers.13 Further-

more, robotics has developed a rich collection of algorithms for

alignment and fusion in multisensor systems. Our development

of the spatial relationship pattern framework was driven by the

desire to make these algorithms available to mobile AR and VR

setups, which our �rst Ubitrack system didn’t support.

Related Work in Ubiquitous Tracking

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2011 PERVASIVE computing 71

between these objects. Thus, in the case

of two 3D coordinate frames, an edge

might describe a transformation with

6DOF, three for position and three for

orientation. This is the most common

case for AR tracking setups, although

other edge types are equally important.

The graph contains a separate edge for

each relationship. It can thus contain

multiple edges between the same pair of

nodes—for example, if multiple inde-

pendent trackers are tracking the same

objects. Furthermore, both nodes and

edges have a set of attributes describing

important characteristics, such as an

object’s name or the measurement data

type of an edge (6DOF pose, 3D posi-

tion, and so on).

Although the SRG describes the

layout of a tracking environment in

detail, an application doesn’t immedi-

ately bene�t from access to the SRG.

The application needs the relevant data

from the sensors rather than data de-

scribing the sensors. To obtain this

data, the Ubitrack server provides the

application with an abstract data�ow

graph (DFG), which the application

instantiates into a concrete data�ow

network. The DFG is a directed graph

with nodes representing computa-

tional units (such as matrix inversion or

multiplication) and edges representing

the �ow of tracking data through this

graph. Sources in a DFG generally rep-

resent sources of tracking data, whereas

sinks mostly correspond to interfaces to

other parts of the application.

Spatial Relationship Patterns

We use spatial relationship patterns to

infer suitable DFGs from an SRG repre-

sentation. A spatial relationship pattern

identi�es parts of the overall SRG for

which a known algorithm exists. The

corresponding dataflow component

executes the algorithm and provides

the result, again as an edge in the SRG.

Semantic Web and Graph Rewriting
An interesting approach to the inference of context from sen-

sor data is the use of Semantic Web technologies (ontologies),

such as in the Cobra project.14 This kind of system description

has some similarities to our SRG approach in that ontologies can

evaluate complex relationships between entities.

In the model-driven engineering �eld, researchers have in-

vestigated the automatic analysis of model diagrams. This has

resulted in graph transformation systems, such as Progres,15

which are used to transform, simulate, and verify UML models

and similar diagrams. Although the graph transformation rules

used there are more complex than spatial relationship pat-

terns, our system implementation pro�ts from the results of this

research.

REFERENCES

 1. E. Frecon and M. Stenius, “Dive: A Scaleable Network Architecture

for Distributed Virtual Environments,” Distributed Systems Eng. J.,

vol. 5, no. 3, 1998, pp. 91–100.

 2. B. MacIntyre and S. Feiner, “A Distributed 3D Graphics Library,” Proc.

ACM Siggraph, ACM Press, 1998, pp. 361–370.

 3. D. Hallaway, T. Hoellerer, and S. Feiner, “Bridging the Gaps: Hybrid

Tracking for Adaptive Mobile Augmented Reality,” Applied Arti�cial

Intelligence, vol. 25, no. 5, 2004, pp. 477–500.

 4. G. Klinker, T. Reicher, and B. Bruegge, “Distributed User Tracking

Concepts for Augmented Reality Applications,” Proc. IEEE Int’l Symp.

Augmented Reality (ISAR), IEEE Press, 2000, pp. 37–44.

 5. R.M. Taylor et al., “VRPN: A Device-Independent, Network-

Transparent VR Peripheral System,” Proc. ACM Symp. Virtual Reality

Software and Technology, ACM Press, 2001, pp. 55–61.

 6. G. Reitmayr and D. Schmalstieg, “Opentracker: A Flexible Software

Design for Three-Dimensional Interaction,” Virtual Reality, vol. 9,

no. 1, 2005, pp. 79–92.

 7. G. Klein and D. Murray, “Parallel Tracking and Mapping for Small

AR Workspaces,” Proc. 6th Int’l Symp. Mixed and Augmented Reality

(ISMAR), IEEE CS Press, 2007, pp. 1–10.

 8. M. Bauer and K. Rothermel, “Towards the Observation of Spatial

Events in Distributed Location-Aware Systems,” Proc. 22nd Int’l

Conf. Distributed Computing Systems Workshops, IEEE CS Press, 2002,

pp. 581–582.

 9. G. Coulouris, The QOSDream Project, tech. report, Laboratory for

Comm. Eng., Univ. of Cambridge, 2002.

 10. A.K. Dey, “Providing Architectural Support for Building Context-

Aware Applications,” doctoral thesis, College of Computing, Georgia

Inst. of Technology, 2000.

 11. J. Hightower, B. Brumitt, and G. Borriello, “The Location Stack: A

Layered Model for Location in Ubiquitous Computing,” Proc. 4th IEEE

Workshop Mobile Computing Systems and Applications (WMCSA), IEEE

CS Press, 2002, pp. 22–28.

 12. B. Brumitt and S. Shafer, “Better Living Through Geometry,” Personal

Ubiquitous Computing, vol. 5, no. 1, 2001, pp. 42–45.

 13. R.Y. Tsai and R.K. Lenz, “A New Technique for Fully Autonomous and

Ef�cient 3D Robotics Hand/Eye Calibration,” IEEE Trans. Robotics and

Automation, vol. 5, no. 3, 1989, pp. 345–358.

 14. H. Chen, T. Finin, and A. Joshi, “An Ontology for Context-Aware

Pervasive Computing Environments,” The Knowledge Eng. Rev.,

vol. 18, no. 3, 2003, pp. 197–207.

 15. A. Schürr, A.J. Winter, and A. Zündorf, “The PROGRES Approach:

Language and Environment,” Handbook of Graph Grammars and

Computing by Graph Transformation: Vol. 2: Applications, Languages,

and Tools, G. Rozenberg, ed., World Scienti�c Publishing, 1999,

pp. 487–550.

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

72 PERVASIVE computing www.computer.org/pervasive

SENSOR NETWORKS

We apply this technique recursively to

further identify solvable subproblems

until a solution for all required data-

�ow elements is found.

Such patterns de�ne the signature

of an algorithm for solving a speci�c

problem in a tracking setup. These

algorithms have as input a set of mea-

surement edges, de�ned by the prob-

lem, and return a set of measurement

edges that is part of the solution. Spatial

relationship patterns don’t merely de-

�ne the type of arguments and return

values; they also impose restrictions

on the geometric relationship between

them. Hence, a pattern has two types of

edges: input edges required in the SRG

before a pattern can be applied (drawn

as solid lines) and output edges added

by a pattern (drawn as dashed lines). In-

puts edges can be further restricted by

specifying predicates over the attributes

of the SRG edges.

Figure 2 shows the two basic spatial

relationship patterns, which suf�ciently

describe many runtime setups (after

calibration). The basic patterns create

an SRG’s transitive re�exive closure:

•	 Inversion. Edges in an SRG are di-

rected and can be inverted, depending

on their type. If the transformation is

represented by a matrix, this simply

gives the inverse matrix.

•	Concatenation. The most common

way to compute the transformation

on an unknown edge is by concatena-

tion of subsequent edges, that is, by

multiplying the transformations.

Consider a simple lab-based AR ap-

plication where a single high-precision

tracker tracks both a mobile display

and a tangible object to be augmented

(Figures 2c and 2d). In this case, an in-

version pattern (Figure 2e) would be

used to change the reference coordinate

frame from the tracker to the display,

followed by a concatenation (Figure 2f)

that computes the object’s location rela-

tive to the display. (You can �nd more

complex patterns that describe sensor

fusion and calibration methods from

robotics and computer vision in earlier

research.1)

Sensor Synchronization

Most algorithms with multiple input

edges, such as concatenation, require

that measurements on all their inputs

are synchronized to produce correct

results. Our system ensures this by

choosing one sensor as the time re-

ference. The system synchronizes the

measurements of other sensors by in-

serting interpolation components that

compute results for the reference sen-

sor’s time stamps.

In the pattern framework, we attri-

bute edges with the type of interface

that’s used for communication. Push

edges provide measurements whenever

they’re available, whereas pull edges

can be queried for a given time stamp.

For correct synchronization, a pattern

can have at most one push input that

provides the reference timing. When

combining multiple push sensors, the

other inputs must be converted from

push to pull by inserting an interpola-

tion pattern.

Figure 3 shows the different vari-

ations of the concatenation pattern re-

sulting from this push-pull expansion,

together with the interpolation pattern.

Using Patterns to Create
Data�ow Networks
The procedure that results in a data-

flow network suitable for an appli-

cation client’s needs can roughly be

divided into several steps.

Client Request

The protocol we used to exchange in-

formation between servers and clients is

Figure 2. The basic spatial relationship patterns (a) inversion and (b) concatenation form the re�ective and transitive closure of

a spatial relationship graph, as shown in the examples: (c) example scenario, (d) spatial relationship graph (SRG), (e) inversion

application, and (f) concatenation application.

A B

(a) (b)

(c) (d) (e) (f)

type:6DOF

A B Ctype:6DOF type:6DOF

Tangible
object

Mobile
display

Mobile
display

Tracker Tracker

Tangible
object

Mobile
display

Tracker

type: 6DOF type: 6DOF type: 6DOF
type: 6DOF

type: 6DOF
type: 6DOF

type: 6DOF

type: 6DOF

type: 6DOF

type:6DOF type:6DOF

Tangible
object

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2011 PERVASIVE computing 73

an XML dialect called Ubitrack Query

Language (UTQL). The client starts the

communication by sending a request to

the server, which contains descriptions

of sensors, processing capabilities, and

queries for particular spatial relation-

ships. All this is expressed in the form

of spatial relationship patterns, which

have only outputs (sensors), only inputs

(queries), or both (processing patterns).

Depending on the kind of patterns

transmitted, we can distinguish be-

tween sensor, application, and process-

ing clients. However, mixed forms are

also frequent, such as the mobile setup

presented later. Because each client can

transmit a different set of patterns, the

system supports clients with different

processing capabilities. Clients can add

or remove patterns from the server at

any time, which triggers a recomputa-

tion of the DFG.

Pattern Application

The server �rst creates an initial SRG by

adding all the clients’ sensor patterns.

On this SRG, it systematically applies

processing patterns until solutions to all

requests are found (or the search fails).

This search for patterns can be split into

a detection and control problem. Detec-

tion of all instances of a given pattern

(subgraph isomorphism) is NP-complete

in the general case, but we can apply

some simple heuristics and cut-off crite-

ria to quickly yield the relevant results.

For example, new edges are only added

if they don’t provide the same informa-

tion as existing edges, only derived in a

different order. The control mechanism

is bootstrapped by the detection and

aims to apply patterns systematically

toward a given goal (a client’s request).

The currently implemented strategies

are simple and apply a combination of

known relevant patterns.

Data�ow Construction

Constructing the DFG from a sequence

of located pattern instances is straight-

forward. All edges in the initial SRG

are associated with a tracking compo-

nent or some other service (such as a

database) in the DFG that provides the

initially unprocessed measurements.

Whenever a pattern is applied to the

SRG, it creates a new algorithmic com-

ponent in the DFG. This component

provides new outputs, which are asso-

ciated with the new SRG edges, while

the component’s inputs are connected

to the components associated with the

input edges of the patterns. This is re-

peated for all pattern applications until

the desired measurement is available at

the end of the DFG.

To support network transport of

measurements with minimal latency,

the tracking data must be sent directly

from one client to another. Therefore,

the server splits a global data�ow de-

scription into client-speci�c parts and

integrates network sources and sinks.

This results in distributed DFGs where

several clients collaborate to satisfy a

speci�c client’s request.

Data�ow Instantiation

When the server has computed a suit-

able DFG in response to a client’s query,

it sends UTQL messages to one or more

clients, requesting that they instanti-

ate and connect the required data�ow

components corresponding to the ap-

plied patterns.

Dynamic Recon�guration
at Runtime
The methods we’ve described provide

the necessary formal framework to

derive optimal dataflow configura-

tions for AR applications, given a

particular sensor con�guration. For

con�guring static sensor arrangements,

this can help in setting up an AR system

because specifying an SRG is easier and

less error-prone than manually con�g-

uring a data�ow con�guration. Using

a graphical SRG editor,4 members of

our group implemented complex multi-

sensor calibration tasks within a few

minutes.

In a ubicomp scenario where mobile

systems move between tracking areas

covered by different sensors, mecha-

nisms are necessary to reconfigure

the SRG based on sensor availability

or region containment. These recon-

�gurations are generally triggered by

analysis of the actual sensor data. As

in our framework, the server coordi-

nates the clients, but it doesn’t receive

actual tracking data. Such function-

ality must be implemented by special

clients.

Transition Between Locales

To ensure system scalability, we limit

queries for available objects, such as

persons, sensors, or �ducials, to a rea-

sonable area of interest, a locale. In

the SRG formalism, we treat locales as

nodes. Containment in a locale is ex-

pressed as an edge of type inLocale, which

is drawn from the locale node to the ob-

ject in question. This lets us model que-

ries for objects as spatial relationship

Figure 3. Pattern extensions for sensor synchronization: (a) push-pull, (b) pull-push,

(c) pull, and (d) interpolation. Push inputs provide the time reference to which the

pull inputs are synchronized. Push edges can be converted to pull by instantiating an

interpolation pattern.

A B C
type:6DOF
mode:push

type:6DOF
mode:pull

type:6DOF
mode:push

A B C
type:6DOF
mode:pull

type:6DOF
mode:pull

type:6DOF
mode:pull

(a)

(c)

A B

type:6DOF
mode:push

type:6DOF
mode:pull

(d)

A B C
type:6DOF
mode:pull

type:6DOF
mode:push

type:6DOF
mode:push(b)

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

74 PERVASIVE computing www.computer.org/pervasive

SENSOR NETWORKS

patterns. In the following example,

we look for objects of type marker that

are contained in the same locale as the

camera1 node, shown in Figure 4.

Using this formalism, an object can

be in multiple locales simultaneously,

and there’s no need for a hierarchical re-

lationship between locales. In addition,

locales need not necessarily correspond

to physical entities, such as rooms, but

they could also express abstract con-

cepts such as a social network.

A dedicated locale manager adds the

locale edges at runtime. In our system,

we implemented a general-purpose lo-

cale manager that can be con�gured

using XML to listen for events from a

particular sensor and insert or remove

locale edges when an object enters or

leaves a particular locale, or when a

sensor starts to deliver data about an

object at all. Locales are de�ned by the

convex hull of a set of points. Each lo-

cale has a separate manager to enhance

scalability.

Unlike the sensors used for AR visu-

alization and interaction, sensors that

are monitored to detect locale contain-

ment don’t need to be extremely precise.

Therefore, we can use relatively cheap

technology, such as Wi-Fi or RFID po-

sitioning, for this purpose.

Identity Pattern for

Assigning Anonymous Sensors

Most sensors typically used in AR set-

ups can uniquely identify the objects

they’re tracking. Other (cheap) sensors

don’t offer this feature, such as a sur-

veillance camera combined with a sim-

ple blob-detection algorithm. In terms

of the SRG, we model these objects as

nodes with a special anonymous attri-

bute and a temporary ID, assigned by

the anonymous sensor client. In a situ-

ation where an ID-sensing tracker de-

tects one of the objects with suf�cient

accuracy, the system can conclude that

the two objects actually are the same

by comparing the positions of both

sensors. In this situation, the ID sen-

sor doesn’t need to provide continuous

measurements, but a single event, such

as the read-out of an RFID tag or the

detection of a marker in a single camera

image, is suf�cient. In the Ubitrack for-

malism, we model this object merging

by inserting symmetric identity edges

between the two nodes in the SRG.

The meaning of an identity edge is that

each measurement of one object is valid

for the other object as well. The mea-

surement identity pattern, shown in

Figure 5, expresses this in the Ubitrack

formalism.

The actual insertion of identity edges

is done by a general-purpose identity

manager, which is con�gured and in-

stantiated for each anonymous sensor.

This manager queries the Ubitrack sys-

tem for all anonymous objects of the

given tracker and a list of candidate

objects, usually limited to a particular

locale or type (for example, person). By

comparing the positions of both anony-

mous and candidate objects, the man-

ager can detect matching objects and

insert identity edges, which lets the sys-

tem use the anonymous sensor until it

loses track of the object.

Dynamic Sensor
Fusion Example
To illustrate Ubitrack’s capabilities, we

describe an example involving dynamic

fusion of multiple sensors for present-

ing AR objects to a mobile user. The

user is guided through the hallway to a

lab, where a virtual sheep is pastured.

The mobile AR system collaborates

with several stationary tracking devices

installed in the environment. Figure 6a

shows a map of the environment.

The user carries a tablet PC with

integrated camera and an inertial mea-

surement unit (IMU) with compass (Inter-

sense InertiaCube), shown in Figure 6b.

The camera image provides a video see-

through AR view on the screen. The

camera also detects black-and-white

�ducial markers and determines their

pose relative to the camera. For higher

robustness and accuracy, the results are

fused with the IMU using a Kalman �l-

ter. The client PC retrieves set of avail-

able markers from the Ubitrack server,

depending on the current locale.

The mobile user enters the hallway

in front of the lab. Using the camera,

the user can track a �ducial marker at

the hallway entrance. As the user looks

at the marker, the system registers the

user’s position.

On the hallway ceiling, an overhead

tracker with a wide-angle camera de-

tects and tracks people. This overhead

tracker adds newly detected people as

anonymous objects to the SRG. How-

ever, the identity manager can identify

one of them as the user by comparing

positions reported by the overhead

camera and the marker tracker.

As the user turns (measured by the

IMU) and looks down the hallway, he

or she can see a sign in front of the lab

Figure 4. Query pattern resulting in all

objects of type marker that are contained

in the same locale as the camera1 node.

L

M

type:
inLocale

C

type:
inLocale

id:camera1 type:marker

C

B

type:
3D Pos

type:
identity

A

type:
3D Pos

Figure 5. The Measurement identity

pattern for 3D Pos measurements. It

can be read as, “measurements of type

3D Pos valid for any object A are also valid

for any other object B connected

to A via an identity edge.”

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2011 PERVASIVE computing 75

door. Walking down the hallway, the

user stays tracked by the overhead cam-

era. In front of the lab door, another

marker lets the user take a look at the

sign with higher accuracy.

The lab is covered by a commer-

cial Ubisense ultra-wideband (UWB)

RF location system, providing po-

sition updates with an accuracy of

approximately 15 centimeters. A UWB-

emitting tag is attached to the mobile

setup, allowing the PC to be detected

and uniquely identified. In the cen-

ter of the lab, a working volume of

approximately 4 × 4 meters is covered

by a high-precision A.R.T. infrared-

optical tracker. To be tracked by this

system, the mobile setup includes a set

of retro-re�ective marker balls.

When the user enters the lab,

the UWB-emitting tag is detected.

Figure 6. Illustration of the example scenario: (a) a map of the environment, showing the positions of markers, the overhead tracker

and ultra-wideband and infrared-optical tracking systems, (b) the handheld PC with an integrated camera, inertial measurement

unit (IMU), ultra-wideband emitter (UWB) and infrared-optical tracking target and (c) the spatial relationship graph (SRG) of the

setup. (Note: For clarity, this SRG only contains sensor and query edges. Also, we show only the “type” attribute.)

Infrared tracking area

Table with
virtual sheep

Augmented reality lab

Hallway

UWB
receiver

Overhead camera

D

A Handheld PC

B Integrated camera

C IMU

D UWB emitter

E IR tracking target

B A
E

C

Overhead
camera

Anon01 Anon02 Anon03

Hallway

Virtual
hallway

sign

Marker

Person

Mobile
camera

IMU/
compass

3D Pos3D Pos 3D Pos

6DOF

3D Ori
6DOF

6DOF

6DOF6DOF

3D Ori

6DOF
(Query)

Anonymous objects

Magnetic
world

3D Ori

Lab

IR
tracker

UWB
tracker

IR target

UWB
emitter

Virtual
sheep

6DOF

6DOF

3D Pos

6DOF

6DOF

6DOF6DOF

6DOF

6DOF (Query)

3D Ori

Lab setup

Mobile setup

Hallway setup

(a)

(c)

(b)

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

76 PERVASIVE computing www.computer.org/pervasive

SENSOR NETWORKS

Using the tag data and the compass,

the system determines the user’s pose,

and the user can see the virtual sheep

on the table. As the user approaches

the table, he or she enters the tracking

area of the high-performance infrared

tracking system (detected by the UWB

tracker), which automatically connects

to the mobile setup.

Figure 6c shows the SRG of the setup.

The edges connecting the mobile setup

and the hallway or lab might be unavail-

able, depending on the user’s locale.

The software system used in the sce-

nario consists of a Ubitrack server and

a set of clients, which together provide

the information for the SRG and dy-

namically add or remove information

derived from the tracking context. For

the static parts of the hallway and lab,

two world clients add the relationships

between the different stationary track-

ing systems and the rooms to the global

SRG. These clients also add the virtual

object nodes, which contain the URL

of associated 3D models for rendering.

The mobile client sends the SRG de-

scribing the mobile setup to the server

at startup. The setup includes a camera,

IMU, UWB emitter, and infrared target

as well as the calibrated relationships

between them. Because the mobile cli-

ent contains the rendering application,

it also sends a query for the 6DOF pose

of all renderable objects in the current

room relative to the camera coordinate

frame. Another query provides the

square marker tracking with the list of

available markers in the room.

Figure 7. Results of the example scenario. (a) One of the generated data�ow graphs and (b) some captured video frames as seen

by the mobile AR user.

(b)

(a)

tempSubgraph1016
CCamera2XSens

tempSubgraph1013
Marker2XSensWorldStatic

tempSubgraph1000
MarkerVisibility

tempSubgraph1014
DsvlCamera1

tempSubgraph1017
XSens

tempSubgraph1011
SPArtWorld2Marker

tempSubgraph1010
SLabVis

tempSubgraph1008
SSchrankOcclusion AB

tempSubgraph1006
SHallwayVis

AB

Output

Output

Output

AB

AC

Intrinsics

ErrorPose

Output

Image 1
query2000

BackgroundImage

CameraIntrinsics

Image

visibility

query2001
RendererIntrinsics

InInverseRotationVelocity

InPose
patternMarkerTrackerFull2021

patternPoseKalmanFilterPush2022

pattern04CastErrorPose2PosePull2053

pattern05PosePullMultiplication2018

pattern05PosePullMultiplication2093

pattern05PosePullMultiplication2095
pattern05PosePullMultiplication2095

pattern05PosePullMultiplication2092
pattern05PosePullMultiplication2092

pattern05PosePullMultiplication2093

pattern05PosePullMultiplication2018

pattern04CastErrorPose2PosePull2053

pattern05PosePullInversion2003 BAAB

AB

AB

AB
PullInput

query2003
X3DQueryHallwayVis

query2006
X3DQueryLabVis

query2009
X3DQueryLabVisShadow

query2012
X3DQuerySchrankOcclusion

PullInput

PullInput

PullInput

AB
AC

AC

BC

BC

AB
AC

BC

AB
AC

BC

pattern05PosePullInversion2003

OutPose

Input Output

patternPoseKalmanFilterPush2022

patternMarkerTrackerFull2021

AB

BC

StaticCondition

pattern02RotationVelocityPullPushTransformation2000
pattern02RotationVelocityPullPushTransformation2000

AB

Intrinsics

RotationVelocity

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2011 PERVASIVE computing 77

The overhead tracking system is rep-

resented by another client that runs on

a stationary computer. It adds detected

people as anonymous objects with tem-

porary IDs to the server’s SRG. The

data association between the overhead

tracking and the mobile setup is done

by a separate identity management

client, which receives the positions of

anonymous and candidate objects in

the hallway from the Ubitrack system.

Inside the lab, the UWB client adds

detected UWB emitters to the SRG and

provides their positions to the data-

�ow network. Because these emitters

have unique IDs, they can be directly

associated with other clients’ objects.

Locale containment for the lab and the

infrared tracker is handled by a locale

manager running on a computer in

the lab.

Figure 7 shows an example of the

generated DFGs and some captured

video frames from the view of the mo-

bile AR user.

O
ur system architecture

ful�lls the exacting per-

formance requirements

necessary for immersion

in an AR world, while simultaneously

extending the bounds within which

uses can experience AR environments,

thus bridging the divide between the

pervasive computing and AR worlds.

Ubitrack differs in several aspects

from current ubicomp approaches such

as the location stack.5 In Ubitrack,

all sensor measurements are mod-

eled as (relative) spatial relationships

between two arbitrary coordinate

systems. Therefore, basic coordinate

system transformations are handled

at the same conceptual layer as more

advanced sensor fusion algorithms. In

fact, transformations are necessary to

enable fusion and not just a convenience

function for application programmers.

On the architectural side, Ubitrack

maintains a strict separation between

con�guration and runtime layers. All

processing that involves inspection of

measurements (such as ID assignment)

must be done by specialized clients at

the runtime layer that in turn recon�g-

ure the con�guration layer’s SRG.

Daniel Pustka is a research and development

engineer at Advanced Realtime Tracking (A.R.T.).

His research interests include sensor fusion,

multisensor registration, and the convergence

of augmented reality and ubiquitous comput-

ing. Pustka has a diploma in computer science

from the Technical University of Munich, where

he performed the research reported here. He is a

member of IEEE. Contact him at daniel.pustka@

ar-tracking.de.

Manuel Huber is a research assistant and PhD

student in the Augmented Reality Group at the

Technical University of Munich. His research

interests include augmented reality, multisen-

sor systems, and RFID-based localization. Huber

has a diploma in computer science from the

Technical University of Munich. He is a member

of the ACM, IEEE, and the German Society for

Computer Science (Gesellschaft für Informatik).

Contact him at huberma@in.tum.de.

Christian Waechter is a research assistant in the

Augmented Reality Group at the Technical Uni-

versity of Munich. His research interests include

people tracking, multisensor environments, and

ubiquitous tracking. Waechter has a diploma in

computer science from the Technical University

of Munich. He is a member of IEEE. Contact him

at waechter@in.tum.de.

Florian Echtler is a postdoctoral researcher at

the Munich University of Applied Sciences. His

research interests include touch-based user inter-

faces and augmented reality. Echtler has a PhD in

computer science from the Technical University

of Munich, where he performed the research

reported here. He is a member of the ACM and

the German Society for Computer Science

(Gesellschaft für Informatik). Contact him at

echtler@in.tum.de.

Peter Keitler is co-founder of Extend3D (www.

extend3d.com), a company offering products and

services in the �eld of industrial augmented reality.

He was formerly a research assistant in the Augmented

Reality Group at the Technical University of Munich.

Keitler has a PhD in computer science from the Tech-

nical University of Munich. Contact him at peter.

keitler@extend3d.de.

Gudrun Klinker is a professor of computer science

at the Technical University of Munich. Her research

interests include approaches to ubiquitous aug-

mented reality that lend themselves to realistic in-

dustrial applications. Klinker has a PhD in computer

science from Carnegie Mellon University. Contact

her at klinker@in.tum.de.

Joseph Newman is a senior software engineer at

Ubisense. His research interest lies in the intersection

of ubiquitous computing and mixed reality, espe-

cially with regard to mobility. Newman has a PhD in

ubiquitous tracking for distributed mixed-reality en-

vironments from the Graz University of Technology,

where he performed the research reported here.

Contact him at joe.newman@ubisense.net.

Dieter Schmalstieg is a full professor of virtual real-

ity and computer graphics at the Graz University

of Technology, where he directs the Studierstube

research project on augmented reality. His research

interests include augmented reality, virtual reality,

real-time graphics, 3D user interfaces, and ubiqui-

tous computing. Schmalstieg has a PhD in computer

science from Vienna University of Technology.

Contact him at schmalstieg@tugraz.at.

the AUTHORS

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

78 PERVASIVE computing www.computer.org/pervasive

SENSOR NETWORKS

UTQL provides a common standard

that lets clients describe previously

unknown sensors and environments

and express the relationships in which

they are interested. Sensor data is dy-

namically fused and communicated

to clients in a peer-to-peer fashion via

a dataflow network. The emergent

structure of this network depends on

the behavior of clients implemented as

reusable extensible and largely decen-

tralized components.

ACKNOWLEDGMENTS

This work was supported by the Bayerische

Forschungsstiftung (project TrackFrame, AZ-653-05)

and the Presenccia Integrated Project funded

under the European Sixth Framework Program,

Future and Emerging Technologies (FET)

(contract number 27731).

REFERENCES

 1. D. Pustka et al., “Spatial Relationship
Patterns: Elements of Reusable Track-
ing and Calibration Systems,” Proc.
IEEE Int’l Symp. Mixed and Augmented
Reality (ISMAR), IEEE CS Press, 2006,
pp. 88–97.

 2. R.Y. Tsai and R.K. Lenz, “A New Tech-
nique for Fully Autonomous and Ef�cient
3D Robotics Hand/Eye Calibration,”
IEEE Trans. Robotics and Automation,
vol. 5, no. 3, 1989, pp. 345–358.

 3. J. Newman, “Ubiquitous Tracking
for Augmented Reality,” Proc. IEEE

Int’l Symp. Mixed and Augmented
Reality (ISMAR), IEEE CS Press, 2004,
pp. 192–201.

 4. J. Hightower, B. Brumitt, and G.
Borriello, “The Location Stack: A Lay-
ered Model for Location in Ubiquitous
Computing,” Proc. 4th IEEE Workshop
Mobile Computing Systems and Appli-
cations (WMCSA), IEEE CS Press, 2002,
pp. 22–28.

 5. P. Keitler et al., “Management of Tracking
for Mixed and Augmented Reality Sys-
tems,” The Engineering of Mixed Real-
ity, E. Dubois, P. Gray, and L. Nigay, eds.,
Springer, 2009, pp. 251–273.

Selected CS articles and columns

are also available for free at

http://ComputingNow.computer.org.

Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

JULY–SEPTEMBER 2011 PERVASIVE computing 79Authorized licensed use limited to: SSEN. Downloaded on August 27,2023 at 19:35:51 UTC from IEEE Xplore. Restrictions apply.

