
RefactorPad: Editing Source Code on Touchscreens

Felix Raab

University of Regensburg

Chair for Media Informatics

felix.raab@ur.de

Christian Wolff

University of Regensburg

Chair for Media Informatics

christian.wolff@ur.de

Florian Echtler

University of Regensburg

Chair for Media Informatics

florian.echtler@ur.de

ABSTRACT

Despite widespread use of touch-enabled devices, the

field of software development has only slowly adopted

new interaction methods for available tools. In this paper,

we present our research on RefactorPad, a code editor for

editing and restructuring source code on touchscreens.

Since entering and modifying code with on-screen

keyboards is time-consuming, we have developed a set of

gestures that take program syntax into account and

support common maintenance tasks on devices such as

tablets. This work presents three main contributions: 1) a

test setup that enables researchers and participants to

collaboratively walk through code examples in real-time;

2) the results of a user study on editing source code with

both finger and pen gestures; 3) a list of operations and

some design guidelines for creators of code editors or

software development environments who wish to

optimize their tools for touchscreens.

Author Keywords

Editor; source code; IDE; gestures; pen; touchscreen;

tablet; surface; refactoring.

ACM Classification Keywords

D.2.3 [Software Engineering]: Coding Tools and

Techniques - Program Editors; D.2.6 [Software

Engineering]: Programming Environments - Interactive

environments.

INTRODUCTION

As devices with touchscreens have become mainstream,

an increasing number of application domains have taken

advantage of interaction via multi-touch and gestures.

One of the applications areas that has remained

comparatively cautious with respect to widespread use of

new interaction paradigms is the field of software

engineering: most of the existing development tools like

integrated development environments (IDEs) heavily rely

on keyboard and mouse interaction in the traditional GUI

style and have yet to be optimized for touch-enabled

devices. In comparison with other domains, development

tools stand out due to feature-rich user interfaces or, for

developers reluctant to use graphical editors, reliance on

efficient text input. Both usage patterns call for input

techniques that do not hinder productivity when those

tools need to be compatible with touchscreens in the

future. Some tablets, for instance, provide high-quality

text rendering that might work well for code reading and

maintenance tasks. Entering and editing source code,

however, is challenging without hardware keyboards.

So far, research in this field has concentrated on creating

new development environments that radically differ from

traditional desktop environments, in some cases by

integrating visual programming concepts [7]. Despite the

benefits of improving overall interaction, this approach

might suffer from low acceptance among developers who

are used to development environments as well as

programming styles in which they have become proficient

over the years. In addition, porting existing tools to multi-

touch interaction is challenging: on the one hand, features

cannot be simply carried over and applied to

touchscreens. Codebases and user interface concepts

would need a considerable amount of rework to be viable

on such devices. On the other hand, pure text-based

environments and editors require efficient keyboard input.

While some advances in touch-typing research can

improve certain aspects, almost all currently available

devices still provide standard on-screen keyboards.

Entering and editing large amounts of text for

programming tasks can quickly get difficult and time-

consuming without hardware keyboards.

Rather than fundamentally change development tools by

introducing workbenches with new user interface

concepts, we attempt to enhance standard text-based

editors with gestural interaction. New code has to be

entered via the on-screen keyboard as usual. However,

code selection, editing and refactoring is supported

through gestures which take programming language

syntax into account. Such gestures take the place of

hotkeys in traditional interfaces and therefore make

common code editing tasks easier to perform on

touchscreens. Since code is generally read more than it is

written [8], maintenance-oriented development tools

might be well-suited for portable, touch-enabled devices.

Furthermore, maintenance activities such as refactoring

have been shown to play a significant role in the

development process. For instance, up to 70% of the

structural changes of the Eclipse IDE source code can be

attributed to refactoring [17]. It has been reported that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

EICS’13, June 24–27, 2013, London, United Kingdom.
Copyright © 2013 ACM 978-1-4503-2138-9/13/06...$15.00.

223

Microsoft uses about 20% of their development efforts for

code rewriting [12].

Prior to implementing a working prototype of

RefactorPad, we have conducted a user study to

determine which gestures programmers find convenient

for common maintenance tasks in a code editor. In

addition, we were interested in pen or finger input

preferences and in what the respective performance

characteristics were. For this purpose, we have created an

interactive and collaborative test setup that allowed us to

walk through code examples with participants in real-

time. The results of the study can be used as guidelines

for implementers of touch-enabled code editors.

Moreover, our test setup might be useful for other

research projects that examine interaction in software

development tools.

We outline related work in section 2, describe how we

identified relevant editor operations in section 3 and show

the test setup and experiment in section 4. In section 5, we

present our results and conclude with design

recommendations derived from our experiments.

RELATED WORK

In this section, we highlight some of the more recent

research projects that are related to our work as they both

present software development tools and integrate natural

interaction [15] methods into their systems.

Although the project Code Bubbles [1] has not been built

for touchscreens, it has introduced novel user interface

concepts for understanding and maintaining code. The

system abandons the file-oriented nature of existing tools

and instead shows connected source code fragments as

bubbles on a canvas. Editable fragments are grouped into

simultaneously visible working sets that have shown to

significantly reduce the time spent navigating and the

time needed to complete code understanding tasks. A

similar project, Code Canvas [3], leverages spatial

memory to reduce disorientation. Using connected

documents, semantic zoom and information overlays, it

serves as an interactive map for developers. Since both

projects share some ideas, a collaboration finally lead to

the commercial tool Debugger Canvas [4]. A map-like

zoomable surface supports debugging by displaying call

paths and execution traces in a set of connected bubbles.

Developers can then step back and forth through the code

and visually explore relationships. The tool is currently

used as a separate mode within the main IDE window.

Since the previously mentioned projects use a zoomable

canvas and do not rely exclusively on traditional user

interface elements, they might work well on touchscreens

when support for multi-touch interaction and gestures is

added.

CodePad [10] provides interactive spaces for various

programming-related tasks on secondary multi-touch-

enabled devices. The devices are connected to the main

IDE and are meant to support development scenarios such

as refactoring, visualization or navigation. While it was

mainly introduced as a vision, a prototype demonstrates

some of their interaction concepts. Code Space [2] takes

the application of natural interaction even further by

enabling teams to use in-air-gestures and cross-device

communication at developer meetings. Touching Factor

[5] and TouchDevelop [13] present solutions for writing

code on small mobile screens. However, in order to

enable efficient input of code, both projects limit

developers either to a certain programming language or to

a specific syntax, enhanced by predefined code blocks.

IDENTIFICATION OF EDITOR OPERATIONS

Since the test system is built upon a standard code editor

component that is not coupled to idiosyncrasies of certain

programming languages, we first compiled a list of

common editor operations that participants later had to

perform during the study. Even though we did not use a

strictly systematic approach of identifying these

operations, we are confident that our choices reasonably

represent general usage since we 1) examined some of the

major editors, 2) took the personal experience of the

authors and colleagues into account and 3) evaluated

qualitative feedback during and after the study which did

not reveal any important commands that were missing.

For 1) we mainly examined the “Edit” menus of Eclipse,

Visual Studio, Xcode and the popular text editor Sublime

Text. Table 1 shows a list of operations used in the study.

Basic Operation Refactoring Task

Move Caret

Select Identifier

Select Multiple

Identifiers

Select Line

Select Multiple Lines

Select Block

Move Lines

Duplicate Line

Delete Line

Toggle Comment

Copy/Paste

Undo/Redo

Goto Method Declaration

Extract Method

(Without Locals)

Extract Method

(With Parameter)

Inline Method

Inline Temp

Replace Temp With Query

Introduce Explaining

Variable (Extract Local)

Rename (Multiple

Variables)

Table 1. List of basic operations and refactoring tasks that

we selected for participants to perform in the study.

The second part of the list includes common refactoring

commands. In addition to the approach we used for

identifying basic edit operations, we took recent research

of refactoring practice [6, 9, 14] into account. As a result,

this list contains some of the refactoring tasks that are

regarded as frequent and important based on interviews

with developers and collected usage data. The list could

be extended by various other commands, however, we did

not want to further increase the number of tasks.

224

TEST SETUP AND USER STUDY

Our test system consisted of two main parts: an editor

running on an iPad 3 tablet showing JavaScript source

code and a second, connected editor running on the laptop

of the experimenter (Figure 1). We selected JavaScript, a

weakly typed language, to reduce participants' mental

load regarding issues such as variable declarations, return

types etc. By means of a socket connection between the

two systems, all touch events on the tablet and key press

events of pen buttons were visualized as overlay on the

experimenter’s editor. In addition, the experimenter could

act as a “wizard” and control different aspects on the

tablet editor in real-time: modifications of the source

code, selections of parts of the source code, cursor

position, scrolling to certain lines, and showing or hiding

the on-screen keyboard were all directly reflected on the

tablet editor. A split view on both systems showed the

initial state of the source code on the left side and the

desired state on the right side. In order to ensure that all

participants received the same instructions, additional

notes were displayed on the experimenter’s system for

each task. This somewhat resembled a “Wizard-of-Oz”

experiment except that the participants were fully aware

of interacting with a remotely controlled system.

Using this setup, the experimenter could track all tablet

interaction on the laptop. At the same time, we could

better introduce each code example by highlighting

certain code lines, thereby avoiding inconvenient pointing

on the small screen in front of the participant. For later

analysis, all interaction events were logged to a database

on the tablet. The pen used in this study was a Adonit Jot

Touch with two hardware buttons and a transparent touch-

disk attached to the pen tip. Since not all characteristics of

interaction can be reconstructed from logged touch

events, we captured the area around the tablet on video so

that the participant’s hands and pen usage could be seen.

Participants

All participants filled in a questionnaire before the actual

test. They were asked to specify their experience in

certain programming languages, IDEs and their usage of

devices with touchscreens. We recruited 16 participants

(14 male, 2 female), aged between 21 and 32 years

(Mean: 24), all right-handed. While all but one of the

participants indicated (on a 5-Point Likert scale) that they

use devices with touchscreens “always” or “frequently”, 9

stated that they “never” use a pen for input. 12

participants had between 2 and 5 years of programming

experience, 2 more than 10 years. 11 participants were

“quite experienced” in the programming language Java, 4

selected “very experienced”. As for JavaScript, 7

participants indicated “quite experienced” and 4 “very

experienced”. 10 participants were “quite experienced” in

using the Eclipse IDE, 2 “very experienced”. In addition,

participants named programming languages and IDEs in

which they were at least “somewhat experienced”: PHP

(8), C++ (7), C (5), C# (5), Visual Studio (5), NetBeans

(4) and Objective-C (3).

Procedure

The procedure itself was mainly based on a “guessibility

study” by Wobbrock et al. [16]. They achieved good

results by showing users the effect of surface gestures and

then letting them perform their cause. Since the test

system did not respond to user input and accepted all

input, the users’ behavior was not affected by technical

aspects such as gesture recognition. In our study,

participants were first introduced to the test setup and

could then try a demo task. Each of the 20 different tasks

had to be done once with the pen and once using only

normal touch interaction without the pen. Consequently,

each participant completed 40 tasks in fully randomized

order. The total number of tasks performed was: 16

participants x 20 tasks x 2 input types = 640 tasks.

Participants took 75 minutes on average (including filling

in the questionnaires).

A single task consisted of the following stages: First, the

experimenter introduced the code example using the

previously mentioned features of the test setup and made

sure that the participant understood both the initial state of

Figure 1. Editor view on the participant's tablet. The caption displays the current task, the left pane shows the initial code with

highlights for emphasis and the right pane the desired result. An enhanced view with task instructions, controls to toggle the on-

screen keyboard and touch/pen events in an overlay is shown on the experimenter's laptop.

225

the source code and the desired state (instruction phase).

The participant should then try to find a suitable gesture

while thinking aloud (preparation phase). As soon as the

participant was ready to articulate the gesture again

(articulation phase), pressing the title button started the

recording of this phase, and another press stopped

recording and displayed two post-task questions. Similar

to the study in [16], the first question asked if the

participant thought the performed gesture was a “good

match for its intended purpose” (“goodness” on 7-Point

Likert scale). As for the second question, we used the

SMEQ (Subjective Mental Effort Question) version

developed in [11] where users should indicate perceived

effort by moving a slider on a scale ranging from “not at

all hard to do” to “tremendously hard to do”. This scale

has been shown to be reliable and easy for participants to

use in its interactive form. After all tasks had been

performed, the test persons filled out a final questionnaire

indicating which input method they preferred (pen,

fingers or both) and which commands they frequently use

in their development environments.

RESULTS

Agreement

In order to classify performed gestures and determine

agreement scores, we examined all video captures and

visualized touch events. Agreement was calculated using

the same formula as in [16], using the number of

participants, of gesture classes and of participants in each

class. Figure 2 shows an example of all combined touch

events for the task “Select Multiple Lines”. This figure

clearly shows two prevalent gesture classes: one group

selected lines by swiping over the lines numbers in the

gutter on the left side of the editor, the other group swiped

across the code block from top left to bottom right. For

this example, the final gesture was the gutter swiping

gesture since it was used by the highest number of

participants and did not conflict with other interactions.

Overall, agreement scores were lower (Mean: 0.20) than

in [16] which might be due to the more complex

application domain in our study. Users generally agreed

most on selection gesture for identifiers, lines and blocks,

“Move Caret” and “Move Lines”.

Goodness – SMEQ – Agreement – Articulation Time

The relationships between the two post-task values for

“goodness” and SMEQ, the calculated agreement score

and the measured articulation time are illustrated in the

two bubble charts in Figure 3. The diagrams show that the

most agreed upon gestures were those that users perceived

as good matches and least effortful. Further, those

gestures were also articulated fastest. This is contrary to

some of the results in [16] where articulation time did not

affect goodness ratings and gestures that took longer to

perform were perceived as easier. We also got different

results for the number of touch events: gestures with more

touch events were perceived as more effortful in our study

(but did not have lower goodness ratings). Again, we

suppose that these differences are due to different target

groups and application domains. We could also confirm

previous results: Better gestures are apparent to

participants more quickly (less preparation time) and

popularity (high agreement) can identify better gestures.

Figure 2. Visualization tool on the experimenter's system

showing two patterns for the task “Select Multiple Lines”.

Figure 3. Left: Bubble chart showing aggregated values for gesture goodness (vertical), SMEQ (horizontal) and agreement (size).

Right: Bubble chart showing aggregated values for goodness (vertical), SMEQ (horizontal) and articulation time (size).

226

We could not detect significant differences between pen

and finger interaction in any of the mentioned values.

Input Preference and Frequently Used IDE Features

In the post-study questionnaire, 44% of the participants

chose the pen as their preferred input method, 25% chose

interaction with fingers and 31% preferred mixed pen and

finger interaction. Since in the pre-study questionnaire,

56% said that they never use a pen for touch input, this

somewhat suggests that support for pen interaction might

be a worthwhile addition to touch-enabled code editors.

IDE features that participants frequently use at their own

judgement, are (number of mentions in brackets): Rename

(6), Auto-complete (5), Navigation to method or class (5),

Auto-format (4), Save (3), Extract method (2), Create new

method (2).

Qualitative Observations

During the study, we observed that the users’ mental

models are strongly influenced by interaction concepts of

mobile operating systems. Most of the participants could

easily be identified as “Android users” or “iOS users”.

Additionally, users frequently asked for context menus

since they either could not think of a suitable gesture or

found a menu more convenient in certain cases. At the

same time, however, they expressed their dislike for

menus that contain too many items. Some participants

were concerned that selection and gesture recognition

might not be precise enough in a working system, leading

to a lot of re-selection and adjustments in the editor. Most

users seemed to prefer one-handed gestures and used

multi-touch interaction only conservatively (only few

gestures were performed with more than two fingers).

According to participants’ comments, the pen was

generally perceived as more accurate than interaction with

the fingers. Users often decided to perform the same

gesture for both the pen and finger version of the task.

The two hardware buttons of the pen were sometimes

used as left and right mouse buttons.

As far as specific refactoring operations are concerned,

users generally seemed to find it easier to extract than to

inline code. Some inline operations resulted in sequences

of unnecessary steps to complete the task. For users

without prior knowledge of inline refactoring, it was not

apparent that this transformation could be automated and

hence only needed a gestural trigger to be initiated.

Design Recommendations

Based on results from the user study, we propose a set of

gestures (Figure 4) for the operations used in this study.

This could serve as starting point for implementers of

touch-enabled code editors. The set also shows some user

interface elements that should be considered as interactive

zones: For instance, the majority of users chose the gutter

with line numbers as selection target for multiple lines

and code blocks by swiping over the corresponding area.

Without involving users, we probably would not have

predicted this area to be a popular line selection target.

Although we tried to remove context menus from the set,

integrating more commands would certainly need some

form of touch-optimized menu or sidebar that could be

displayed on demand. As another subtle, yet important,

Figure 4: Gesture set for basic selection, editing and refactoring operations for text-based editors on touchscreens.

(SelectFirstIdentifier > 2FingerTap * means: Select the first identifier, then (>) perform multiple (*) taps using 2 fingers.)

227

usability aspect the study revealed the need for additional

“buffer zones” at the top and bottom of the editor area:

Almost all participants touched buttons in the navigation

bar by accident when they tried to perform their gestures

in the editor area.

DISCUSSION

Our current work can be extended in several directions.

First, we propose gestures only for a basic subset of

commands. Integration of more functionality requires

additional selection triggers since not all commands can

easily be mapped to gestures. Second, the code examples

in our tasks included only “intra-file” source code. It

remains open how certain commands would best work

with multiple files. Third, some of the common

refactoring tasks need additional configuration or user

input with the keyboard. Our current command set,

however, focuses on the interaction used to trigger the

command. Fourth, the lab setting might have prevented

users from using two-handed interaction since the tablet

could not be picked up by participants to freely interact

with the test system. Finally, our work does not address

the problem of entering large amounts of new code and

still relies on existing on-screen keyboards.

CONCLUSION

With the continuing adoption of touchscreens and mobile

devices, it seems logical that development tools need to

be optimized for multi-touch and gestural interaction in

the future. In addition, approaches such as visual

programming have led to interesting concepts but have

not gained much acceptance among professional

programmers. This might partly be due to the fact that

developers wish to keep working with programming

languages and tools they have become experienced in

over the years. Therefore, rather than radically changing

development tools, we suggest to enhance existing text-

based code editors with gestural interaction for basic

selection and edit operations. This work presents a test

setup that involves users to find suitable ways of

interacting with source code on touchscreens and

proposes design recommendations for implementers of

touch-enabled development environments.

REFERENCES

1. Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S.,

Cheung, W., Kaplan, J., Coleman, C., Adeputra, F.,

LaViola, J. J. Code bubbles: a working set-based

interface for code understanding and maintenance. In

Proc CHI '10, 2503-2512.

2. Bragdon, A., DeLine, R., Hinckley, K., Morris, M. R.,

CodeSpace: Touch + Air Gesture Hybrid Interactions

for Supporting Developer Meetings. In Proc ITS’11,

212-221.

3. DeLine, R., Rowan, K. Code Canvas: Zooming

towards Better Development Environments. In Proc

ICSE'10, 207-210.

4. DeLine, R., Bragdon, A., Rowan, K., Jacobsen, J.,

Reiss, S. P. Debugger canvas: industrial experience

with the code bubbles paradigm. In Proc ICSE'12,

1064-1073.

5. Hesenius, M., Medina, C. D. O., Herzberg, D.

Touching Factor: Software Development on Tablets.

In Lecture Notes in Computer Science 7306 (2012),

148-161.

6. Kim, M., Zimmermann, T., Nagappan, N. A Field

Study of Refactoring Benefits and Practice. In Proc.

FSE’12.

7. Knaus, C. Interaction design for software engineering:

boost into programming future. In Interactions 15, 4

(July 2008), 71-74.

http://doi.acm.org/10.1145/1374489.1374508

8. Ko, A., Aung, H. H., Myers, B. Eliciting Design

Requirements for Maintenance-Oriented IDEs: A

Detailed Study of Corrective and Perfective

Maintenance Tasks. In Proc. ICSE '05, 126-135.

9. Negara, S., Chen, N., Vakilian, M., Johnson, R. E.,

Dig, D. Using Continuous Change Analysis to

Understand the Practice of Refactoring. Technical

Report, http://hdl.handle.net/2142/30759.

10. Parnin, C., Görg, C., Rugaber, S. CodePad: Interactive

Spaces for Maintaining Concentration in Programming

Environments. In Proc. SOFTVIS’10, 15-24.

11. Sauro, J., Dumas, J. S. Comparison of Three One-

Question, Post-Task Usability Questionnaires. In

Proc. CHI'09, 1599-1608

12. Shatnawi, R., Li, W. An Empirical Assessment of

Refactoring Impact on Software Quality Using a

Hierarchical Quality Model. International Journal of

Software Engineering and Its Applications 5, 4 (2011),

127-149.

13. Tillmann, N., Moskal, M., de Halleux, J.

TouchDevelop: programming cloud-connected mobile

devices via touchscreen. In Proc. ONWARD’11, 49-

60.

14. Vakilian, M., Chen, N., Negara, S., Rajkumar, B. A.,

Bailey, B. P., Johnson, R. E. Use, disuse, and misuse

of automated refactorings. In Proc. ICSE'12, 233-243.

15. Wigdor, D., Wixon, D. Brave NUI World: Designing

Natural User Interfaces for Touch and Gesture,

Morgan Kaufmann, Burlington, MA, USA, 2011.

16. Wobbrock, J. O., Morris, M. R., Wilson, A. D. User-

defined gestures for surface computing. In Proc.

CHI'09, 1083-1092.

17. Xing, Z., Stroulia, E. Refactoring Practice: How it is

and How it Should be Supported – An Eclipse Case

Study. In Proc. ICSM’06, 458-468.

228

